#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <mex.h>
#include <math.h>
#include "matrix.h"
#include "sfa.h"
/*
Files contained in this header file sfa.h:
1. Algorithms for solving the linear system A A^T z0 = Av (see the description of A from the following context)
void Thomas(double *zMax, double *z0,
double * Av, int nn)
void Rose(double *zMax, double *z0,
double * Av, int nn)
int supportSet(double *x, double *v, double *z,
double *g, int * S, double lambda, int nn)
void dualityGap(double *gap, double *z,
double *g, double *s, double *Av,
double lambda, int nn)
void dualityGap2(double *gap, double *z,
double *g, double *s, double *Av,
double lambda, int nn)
2. The Subgraident Finding Algorithm (SFA) for solving problem (4) (refer to the description of the problem for detail)
int sfa(double *x, double *gap,
double *z, double *z0, double * v, double * Av,
double lambda, int nn, int maxStep,
double *s, double *g,
double tol, int tau, int flag)
int sfa_special(double *x, double *gap,
double *z, double * v, double * Av,
double lambda, int nn, int maxStep,
double *s, double *g,
double tol, int tau)
int sfa_one(double *x, double *gap,
double *z, double * v, double * Av,
double lambda, int nn, int maxStep,
double *s, double *g,
double tol, int tau)
*/
/*
In this file, we solve the Fused Lasso Signal Approximator (FLSA) problem:
min_x 1/2 \|x-v\|^2 + lambda1 * \|x\|_1 + lambda2 * \|A x\|_1, (1)
It can be shown that, if x* is the solution to
min_x 1/2 \|x-v\|^2 + lambda2 \|A x\|_1, (2)
then
x**= sgn(x*) max(|x*|-lambda_1, 0) (3)
is the solution to (1).
By some derivation (see the description in sfa.h), (2) can be solved by
x*= v - A^T z*,
where z* is the optimal solution to
min_z 1/2 z^T A AT z - < z, A v>,
subject to \|z\|_{infty} \leq lambda2 (4)
*/
/*
In flsa, we solve (1) corresponding to a given (lambda1, lambda2)
void flsa(double *x, double *z, double *gap,
double * v, double *z0,
double lambda1, double lambda2, int n,
int maxStep, double tol, int flag)
Output parameters:
x: the solution to problem (1)
z: the solution to problem (4)
infor: the information about running the subgradient finding algorithm
infor[0] = gap: the computed gap (either the duality gap
or the summation of the absolute change of the adjacent solutions)
infor[1] = steps: the number of iterations
infor[2] = lambad2_max: the maximal value of lambda2_max
infor[3] = numS: the number of elements in the support set
Input parameters:
v: the input vector to be projected
z0: a guess of the solution of z
lambad1: the regularization parameter
labmda2: the regularization parameter
n: the length of v and x
maxStep: the maximal allowed iteration steps
tol: the tolerance parameter
tau: the program sfa is checked every tau iterations for termination
flag: the flag for initialization and deciding calling sfa
switch ( flag )
1-4, 11-14: sfa
switch ( flag )
case 1, 2, 3, or 4:
z0 is a "good" starting point
(such as the warm-start of the previous solution,
or the user want to test the performance of this starting point;
the starting point shall be further projected to the L_{infty} ball,
to make sure that it is feasible)
case 11, 12, 13, or 14: z0 is a "random" guess, and thus not used
(we shall initialize z as follows:
if lambda2 >= 0.5 * lambda_2^max, we initialize the solution of the linear system;
if lambda2 < 0.5 * lambda_2^max, we initialize with zero
this solution is projected to the L_{infty} ball)
switch( flag )
5, 15: sfa_special
switch( flag )
5: z0 is a good starting point
15: z0 is a bad starting point, use the solution of the linear system
switch( flag )
6, 16: sfa_one
switch( flag )
6: z0 is a good starting point
16: z0 is a bad starting point, use the solution of the linear system
Revision made on October 31, 2009.
The input variable z0 is not modified after calling sfa. For this sake, we allocate a new variable zz to replace z0.
*/
void flsa(double *x, double *z, double *infor,
double * v, double *z0,
double lambda1, double lambda2, int n,
int maxStep, double tol, int tau, int flag){
int i, nn=n-1, m;
double zMax, temp;
double *Av, *g, *s;
int iterStep, numS;
double gap;
double *zz; /*to replace z0, so that z0 shall not revised after */
Av=(double *) malloc(sizeof(double)*nn);
/*
Compute Av= A*v (n=4, nn=3)
A= [ -1 1 0 0;
0 -1 1 0;
0 0 -1 1]
*/
for (i=0;i<nn; i++)
Av[i]=v[i+1]-v[i];
/*
Sovlve the linear system via Thomas's algorithm or Rose's algorithm
B * z0 = Av
*/
Thomas(&zMax, z, Av, nn);
/*
Rose(&zMax, z, Av, nn);
*/
/*
printf("\n zMax=%2.5f\n",zMax);
*/
/*
We consider two cases:
1) lambda2 >= zMax, which leads to a solution with same entry values
2) lambda2 < zMax, which needs to first run sfa, and then perform soft thresholding
*/
/*
First case: lambda2 >= zMax
*/
if (lambda2 >= zMax){
temp=0;
m=n%5;
if (m!=0){
for (i=0;i<m;i++)
temp+=v[i];
}
for (i=m;i<n;i+=5){
temp += v[i] + v[i+1] + v[i+2] + v[i+3] + v[i+4];
}
temp/=n;
/* temp is the mean value of v*/
/*
soft thresholding by lambda1
*/
if (temp> lambda1)
temp= temp-lambda1;
else
if (temp < -lambda1)
temp= temp+lambda1;
else
temp=0;
m=n%7;
if (m!=0){
for (i=0;i<m;i++)
x[i]=temp;
}
for (i=m;i<n;i+=7){
x[i] =temp;
x[i+1] =temp;
x[i+2] =temp;
x[i+3] =temp;
x[i+4] =temp;
x[i+5] =temp;
x[i+6] =temp;
}
gap=0;
free(Av);
infor[0]= gap;
infor[1]= 0;
infor[2]=zMax;
infor[3]=0;
return;
}
/*
Second case: lambda2 < zMax
We need to call sfa for computing x, and then do soft thresholding
Before calling sfa, we need to allocate memory for g and s,
and initialize z and z0.
*/
/*
Allocate memory for g and s
*/
g =(double *) malloc(sizeof(double)*nn),
s =(double *) malloc(sizeof(double)*nn);
m=flag /10;
/*
If m=0, then this shows that, z0 is a "good" starting point. (m=1-6)
Otherwise (m=11-16), we shall set z as either the solution to the linear system.
or the zero point
*/
if (m==0){
for (i=0;i<nn;i++){
if (z0[i] > lambda2)
z[i]=lambda2;
else
if (z0[i]<-lambda2)
z[i]=-lambda2;
else
z[i]=z0[i];
}
}
else{
if (lambda2 >= 0.5 * zMax){
for (i=0;i<nn;i++){
if (z[i] > lambda2)
z[i]=lambda2;
else
if (z[i]<-lambda2)
z[i]=-lambda2;
}
}
else{
for (i=0;i<nn;i++)
z[i]=0;
}
}
flag=flag %10; /*
flag is now in [1:6]
for sfa, i.e., flag in [1:4], we need initialize z0 with zero
*/
if (flag>=1 && flag<=4){
zz =(double *) malloc(sizeof(double)*nn);
for (i=0;i<nn;i++)
zz[i]=0;
}
/*
call sfa, sfa_one, or sfa_special to compute z, for finding the subgradient
and x
*/
if (flag==6)
iterStep=sfa_one(x, &gap, &numS,
z, v, Av,
lambda2, nn, maxStep,
s, g,
tol, tau);
else
if (flag==5)
iterStep=sfa_special(x, &gap, &numS,
z, v, Av,
lambda2, nn, maxStep,
s, g,
tol, tau);
else{
iterStep=sfa(x, &gap, &numS,
z, zz, v, Av,
lambda2, nn, maxStep,
s, g,
tol,tau, flag);
free (zz);
/*free the variable zz*/
}
/*
soft thresholding by lambda1
*/
for(i=0;i<n;i++)
if (x[i] > lambda1)
x[i]-=lambda1;
else
if (x[i]<-lambda1)
x[i]+=lambda1;
else
x[i]=0;
free(Av);
free(g);
free(s);
infor[0]=gap;
infor[1]=iterStep;
infor[2]=zMax;
infor[3]=numS;
}