[d8e26d]: / SLEP_package_4.1 / Examples / L1Lq / example_glLogisticR.m

Download this file

122 lines (100 with data), 3.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
clear, clc;
% This is an example for running the function glLogisticR
%
% Problem:
%
% min f(x,c) = - weight_i * log (p_i) + rho * sum_j ||x^j||_q
%
% a_i denotes a training sample,
% and a_i' corresponds to the i-th row of the data matrix A
%
% y_i (either 1 or -1) is the response
%
% p_i= 1/ (1+ exp(-y_i (x' * a_i + c) ) ) denotes the probability
%
% weight_i denotes the weight for the i-th sample
%
% x is grouped into k groups according to opts.ind.
% The indices of x_j in x is (ind(j)+1):ind(j+1).
%
% For detailed description of the function, please refer to the Manual.
%
% Last modified on August 10, 2009.
%
% For any problem, please contact Jun Liu (j.liu@asu.edu)
cd ..
cd ..
root=cd;
addpath(genpath([root '/SLEP']));
% add the functions in the folder SLEP to the path
% change to the original folder
cd Examples/L1Lq;
m=1000; n=1000; % The data matrix is of size m x n
ind=[0 100:100:n]; % the indices for the groups
k=length(ind)-1; % number of groups
q=2; % the value of q in the L1/Lq regularization
rho=0.8; % the regularization parameter
randNum=1; % a random number
% ---------------------- generate random data ----------------------
randn('state',(randNum-1)*3+1);
A=randn(m,n); % the data matrix
randn('state',(randNum-1)*3+2);
xOrin=randn(n,1);
randn('state',(randNum-1)*3+3);
y=[ones(n/2,1);...
-ones(n/2, 1)]; % the response
%----------------------- Set optional items -----------------------
opts=[];
% Starting point
opts.init=2; % starting from a zero point
% Termination
opts.tFlag=5; % run .maxIter iterations
opts.maxIter=100; % maximum number of iterations
% Normalization
opts.nFlag=0; % without normalization
% Regularization
opts.rFlag=1; % the input parameter 'rho' is a ratio in (0, 1)
% Group Property
opts.ind=ind; % set the group indices
opts.q=q; % set the value for q
opts.sWeight=[1,1]; % set the weight for positive and negative samples
opts.gWeight=ones(k,1);
% set the weight for the group, a cloumn vector
%----------------------- Run the code glLogisticR -----------------------
fprintf('\n mFlag=0, lFlag=0 \n');
opts.mFlag=0; % treating it as compositive function
opts.lFlag=0; % Nemirovski's line search
tic;
[x1, c1, funVal1, ValueL1]= glLogisticR(A, y, rho, opts);
toc;
opts.maxIter=1000;
fprintf('\n mFlag=1, lFlag=0 \n');
opts.mFlag=1; % smooth reformulation
opts.lFlag=0; % Nemirovski's line search
opts.tFlag=2; opts.tol= funVal1(end);
tic;
[x2, c2, funVal2, ValueL2]= glLogisticR(A, y, rho, opts);
toc;
fprintf('\n mFlag=1, lFlag=1 \n');
opts.mFlag=1; % smooth reformulation
opts.lFlag=1; % adaptive line search
opts.tFlag=2; opts.tol= funVal1(end);
tic;
[x3, c3, funVal3, ValueL3]= glLogisticR(A, y, rho, opts);
toc;
figure;
plot(funVal1,'-r');
hold on;
plot(funVal2,'--b');
hold on;
plot(funVal3,':g');
legend('mFlag=0, lFlag=0', 'mFlag=1, lFlag=0', 'mFlag=1, lFlag=1');
xlabel('Iteration (i)');
ylabel('The objective function value');
% % --------------------- compute the pathwise solutions ----------------
% opts.fName='glLogisticR'; % set the function name to 'glLogisticR'
% Z=[0.9, 0.8, 0.5, 0.3]; % set the parameters
%
% % run the function pathSolutionLogistic
% fprintf('\n Compute the pathwise solutions, please wait...');
% [X,C]=pathSolutionLogistic(A, y, Z, opts);