|
a |
|
b/MLFre/DPC/SLEP/altra.h |
|
|
1 |
#include "mex.h" |
|
|
2 |
#include <stdio.h> |
|
|
3 |
#include <math.h> |
|
|
4 |
#include <string.h> |
|
|
5 |
|
|
|
6 |
|
|
|
7 |
/* |
|
|
8 |
* Important Notice: September 20, 2010 |
|
|
9 |
* |
|
|
10 |
* In this head file, we assume that the features in the tree strucutre |
|
|
11 |
* are well ordered. That is to say, the indices of the left nodes is always less |
|
|
12 |
* than the right nodes. Ideally, this can be achieved by reordering the features. |
|
|
13 |
* |
|
|
14 |
* The advantage of this ordered features is that, we donot need to use an explicit |
|
|
15 |
* variable for recording the indices. |
|
|
16 |
* |
|
|
17 |
* To deal with the more general case when the features might not be well ordered, |
|
|
18 |
* we provide the functions in the head file "general_altra.h". Compared with the files in this head file, |
|
|
19 |
* we need an additional parameter G, which contains the indices of the nodes. |
|
|
20 |
* |
|
|
21 |
* |
|
|
22 |
*/ |
|
|
23 |
|
|
|
24 |
/* |
|
|
25 |
* ------------------------------------------------------------------- |
|
|
26 |
* Functions and parameter |
|
|
27 |
* ------------------------------------------------------------------- |
|
|
28 |
* |
|
|
29 |
* altra solves the following problem |
|
|
30 |
* |
|
|
31 |
* 1/2 \|x-v\|^2 + \sum \lambda_i \|x_{G_i}\|, |
|
|
32 |
* |
|
|
33 |
* where x and v are of dimension n, |
|
|
34 |
* \lambda_i >=0, and G_i's follow the tree structure |
|
|
35 |
* |
|
|
36 |
* It is implemented in Matlab as follows: |
|
|
37 |
* |
|
|
38 |
* x=altra(v, n, ind, nodes); |
|
|
39 |
* |
|
|
40 |
* ind is a 3 x nodes matrix. |
|
|
41 |
* Each column corresponds to a node. |
|
|
42 |
* |
|
|
43 |
* The first element of each column is the starting index, |
|
|
44 |
* the second element of each column is the ending index |
|
|
45 |
* the third element of each column corrreponds to \lambbda_i. |
|
|
46 |
* |
|
|
47 |
* ------------------------------------------------------------------- |
|
|
48 |
* Notices: |
|
|
49 |
* ------------------------------------------------------------------- |
|
|
50 |
* |
|
|
51 |
* 1. The nodes in the parameter "ind" should be given in the |
|
|
52 |
* either |
|
|
53 |
* the postordering of depth-first traversal |
|
|
54 |
* or |
|
|
55 |
* the reverse breadth-first traversal. |
|
|
56 |
* |
|
|
57 |
* 2. When each elements of x are penalized via the same L1 |
|
|
58 |
* (equivalent to the L2 norm) parameter, one can simplify the input |
|
|
59 |
* by specifying |
|
|
60 |
* the "first" column of ind as (-1, -1, lambda) |
|
|
61 |
* |
|
|
62 |
* In this case, we treat it as a single "super" node. Thus in the value |
|
|
63 |
* nodes, we only count it once. |
|
|
64 |
* |
|
|
65 |
* 3. The values in "ind" are in [1,n]. |
|
|
66 |
* |
|
|
67 |
* 4. The third element of each column should be positive. The program does |
|
|
68 |
* not check the validity of the parameter. |
|
|
69 |
* |
|
|
70 |
* It is still valid to use the zero regularization parameter. |
|
|
71 |
* In this case, the program does not change the values of |
|
|
72 |
* correponding indices. |
|
|
73 |
* |
|
|
74 |
* |
|
|
75 |
* ------------------------------------------------------------------- |
|
|
76 |
* History: |
|
|
77 |
* ------------------------------------------------------------------- |
|
|
78 |
* |
|
|
79 |
* Composed by Jun Liu on April 20, 2010 |
|
|
80 |
* |
|
|
81 |
* For any question or suggestion, please email j.liu@asu.edu. |
|
|
82 |
* |
|
|
83 |
*/ |
|
|
84 |
|
|
|
85 |
|
|
|
86 |
void altra(double *x, double *v, int n, double *ind, int nodes){ |
|
|
87 |
|
|
|
88 |
int i, j, m; |
|
|
89 |
double lambda,twoNorm, ratio; |
|
|
90 |
|
|
|
91 |
/* |
|
|
92 |
* test whether the first node is special |
|
|
93 |
*/ |
|
|
94 |
if ((int) ind[0]==-1){ |
|
|
95 |
|
|
|
96 |
/* |
|
|
97 |
*Recheck whether ind[1] equals to zero |
|
|
98 |
*/ |
|
|
99 |
if ((int) ind[1]!=-1){ |
|
|
100 |
printf("\n Error! \n Check ind"); |
|
|
101 |
exit(1); |
|
|
102 |
} |
|
|
103 |
|
|
|
104 |
lambda=ind[2]; |
|
|
105 |
|
|
|
106 |
for(j=0;j<n;j++){ |
|
|
107 |
if (v[j]>lambda) |
|
|
108 |
x[j]=v[j]-lambda; |
|
|
109 |
else |
|
|
110 |
if (v[j]<-lambda) |
|
|
111 |
x[j]=v[j]+lambda; |
|
|
112 |
else |
|
|
113 |
x[j]=0; |
|
|
114 |
} |
|
|
115 |
|
|
|
116 |
i=1; |
|
|
117 |
} |
|
|
118 |
else{ |
|
|
119 |
memcpy(x, v, sizeof(double) * n); |
|
|
120 |
i=0; |
|
|
121 |
} |
|
|
122 |
|
|
|
123 |
/* |
|
|
124 |
* sequentially process each node |
|
|
125 |
* |
|
|
126 |
*/ |
|
|
127 |
for(;i < nodes; i++){ |
|
|
128 |
/* |
|
|
129 |
* compute the L2 norm of this group |
|
|
130 |
*/ |
|
|
131 |
twoNorm=0; |
|
|
132 |
for(j=(int) ind[3*i]-1;j< (int) ind[3*i+1];j++) |
|
|
133 |
twoNorm += x[j] * x[j]; |
|
|
134 |
twoNorm=sqrt(twoNorm); |
|
|
135 |
|
|
|
136 |
lambda=ind[3*i+2]; |
|
|
137 |
if (twoNorm>lambda){ |
|
|
138 |
ratio=(twoNorm-lambda)/twoNorm; |
|
|
139 |
|
|
|
140 |
/* |
|
|
141 |
* shrinkage this group by ratio |
|
|
142 |
*/ |
|
|
143 |
for(j=(int) ind[3*i]-1;j<(int) ind[3*i+1];j++) |
|
|
144 |
x[j]*=ratio; |
|
|
145 |
} |
|
|
146 |
else{ |
|
|
147 |
/* |
|
|
148 |
* threshold this group to zero |
|
|
149 |
*/ |
|
|
150 |
for(j=(int) ind[3*i]-1;j<(int) ind[3*i+1];j++) |
|
|
151 |
x[j]=0; |
|
|
152 |
} |
|
|
153 |
} |
|
|
154 |
} |
|
|
155 |
|
|
|
156 |
|
|
|
157 |
|
|
|
158 |
/* |
|
|
159 |
* altra_mt is a generalization of altra to the |
|
|
160 |
* |
|
|
161 |
* multi-task learning scenario (or equivalently the multi-class case) |
|
|
162 |
* |
|
|
163 |
* altra_mt(X, V, n, k, ind, nodes); |
|
|
164 |
* |
|
|
165 |
* It applies altra for each row (1xk) of X and V |
|
|
166 |
* |
|
|
167 |
*/ |
|
|
168 |
|
|
|
169 |
|
|
|
170 |
void altra_mt(double *X, double *V, int n, int k, double *ind, int nodes){ |
|
|
171 |
int i, j; |
|
|
172 |
|
|
|
173 |
double *x=(double *)malloc(sizeof(double)*k); |
|
|
174 |
double *v=(double *)malloc(sizeof(double)*k); |
|
|
175 |
|
|
|
176 |
for (i=0;i<n;i++){ |
|
|
177 |
/* |
|
|
178 |
* copy a row of V to v |
|
|
179 |
* |
|
|
180 |
*/ |
|
|
181 |
for(j=0;j<k;j++) |
|
|
182 |
v[j]=V[j*n + i]; |
|
|
183 |
|
|
|
184 |
altra(x, v, k, ind, nodes); |
|
|
185 |
|
|
|
186 |
/* |
|
|
187 |
* copy the solution to X |
|
|
188 |
*/ |
|
|
189 |
for(j=0;j<k;j++) |
|
|
190 |
X[j*n+i]=x[j]; |
|
|
191 |
} |
|
|
192 |
|
|
|
193 |
free(x); |
|
|
194 |
free(v); |
|
|
195 |
} |
|
|
196 |
|
|
|
197 |
|
|
|
198 |
|
|
|
199 |
|
|
|
200 |
/* |
|
|
201 |
* compute |
|
|
202 |
* lambda2_max=computeLambda2Max(x,n,ind,nodes); |
|
|
203 |
* |
|
|
204 |
* compute the 2 norm of each group, which is divided by the ind(3,:), |
|
|
205 |
* then the maximum value is returned |
|
|
206 |
*/ |
|
|
207 |
/* |
|
|
208 |
*This function does not consider the case ind={[-1, -1, 100]',...} |
|
|
209 |
* |
|
|
210 |
*This functions is not used currently. |
|
|
211 |
*/ |
|
|
212 |
|
|
|
213 |
void computeLambda2Max(double *lambda2_max, double *x, int n, double *ind, int nodes){ |
|
|
214 |
int i, j, m; |
|
|
215 |
double lambda,twoNorm; |
|
|
216 |
|
|
|
217 |
*lambda2_max=0; |
|
|
218 |
|
|
|
219 |
for(i=0;i < nodes; i++){ |
|
|
220 |
/* |
|
|
221 |
* compute the L2 norm of this group |
|
|
222 |
*/ |
|
|
223 |
twoNorm=0; |
|
|
224 |
for(j=(int) ind[3*i]-1;j< (int) ind[3*i+1];j++) |
|
|
225 |
twoNorm += x[j] * x[j]; |
|
|
226 |
twoNorm=sqrt(twoNorm); |
|
|
227 |
|
|
|
228 |
twoNorm=twoNorm/ind[3*i+2]; |
|
|
229 |
|
|
|
230 |
if (twoNorm >*lambda2_max ) |
|
|
231 |
*lambda2_max=twoNorm; |
|
|
232 |
} |
|
|
233 |
} |
|
|
234 |
|
|
|
235 |
/* |
|
|
236 |
* ------------------------------------------------------------------- |
|
|
237 |
* Function and parameter |
|
|
238 |
* ------------------------------------------------------------------- |
|
|
239 |
* |
|
|
240 |
* treeNorm compute |
|
|
241 |
* |
|
|
242 |
* \sum \lambda_i \|x_{G_i}\|, |
|
|
243 |
* |
|
|
244 |
* where x is of dimension n, |
|
|
245 |
* \lambda_i >=0, and G_i's follow the tree structure |
|
|
246 |
* |
|
|
247 |
* The file is implemented in the following in Matlab: |
|
|
248 |
* |
|
|
249 |
* tree_norm=treeNorm(x, n, ind,nodes); |
|
|
250 |
*/ |
|
|
251 |
|
|
|
252 |
|
|
|
253 |
void treeNorm(double *tree_norm, double *x, int n, double *ind, int nodes){ |
|
|
254 |
|
|
|
255 |
int i, j, m; |
|
|
256 |
double twoNorm, lambda; |
|
|
257 |
|
|
|
258 |
*tree_norm=0; |
|
|
259 |
|
|
|
260 |
/* |
|
|
261 |
* test whether the first node is special |
|
|
262 |
*/ |
|
|
263 |
if ((int) ind[0]==-1){ |
|
|
264 |
|
|
|
265 |
/* |
|
|
266 |
*Recheck whether ind[1] equals to zero |
|
|
267 |
*/ |
|
|
268 |
if ((int) ind[1]!=-1){ |
|
|
269 |
printf("\n Error! \n Check ind"); |
|
|
270 |
exit(1); |
|
|
271 |
} |
|
|
272 |
|
|
|
273 |
lambda=ind[2]; |
|
|
274 |
|
|
|
275 |
for(j=0;j<n;j++){ |
|
|
276 |
*tree_norm+=fabs(x[j]); |
|
|
277 |
} |
|
|
278 |
|
|
|
279 |
*tree_norm=*tree_norm * lambda; |
|
|
280 |
|
|
|
281 |
i=1; |
|
|
282 |
} |
|
|
283 |
else{ |
|
|
284 |
i=0; |
|
|
285 |
} |
|
|
286 |
|
|
|
287 |
/* |
|
|
288 |
* sequentially process each node |
|
|
289 |
* |
|
|
290 |
*/ |
|
|
291 |
for(;i < nodes; i++){ |
|
|
292 |
/* |
|
|
293 |
* compute the L2 norm of this group |
|
|
294 |
*/ |
|
|
295 |
twoNorm=0; |
|
|
296 |
for(j=(int) ind[3*i]-1;j< (int) ind[3*i+1];j++) |
|
|
297 |
twoNorm += x[j] * x[j]; |
|
|
298 |
twoNorm=sqrt(twoNorm); |
|
|
299 |
|
|
|
300 |
lambda=ind[3*i+2]; |
|
|
301 |
|
|
|
302 |
*tree_norm=*tree_norm + lambda*twoNorm; |
|
|
303 |
} |
|
|
304 |
} |
|
|
305 |
|
|
|
306 |
|
|
|
307 |
/* |
|
|
308 |
* ------------------------------------------------------------------- |
|
|
309 |
* Function and parameter |
|
|
310 |
* ------------------------------------------------------------------- |
|
|
311 |
* |
|
|
312 |
* findLambdaMax compute |
|
|
313 |
* |
|
|
314 |
* the lambda_{max} that achieves a zero solution for |
|
|
315 |
* |
|
|
316 |
* min 1/2 \|x-v\|^2 + \lambda_{\max} * \sum w_i \|x_{G_i}\|, |
|
|
317 |
* |
|
|
318 |
* where x is of dimension n, |
|
|
319 |
* w_i >=0, and G_i's follow the tree structure |
|
|
320 |
* |
|
|
321 |
* The file is implemented in the following in Matlab: |
|
|
322 |
* |
|
|
323 |
* lambdaMax=findLambdaMax(v, n, ind,nodes); |
|
|
324 |
*/ |
|
|
325 |
|
|
|
326 |
void findLambdaMax(double *lambdaMax, double *v, int n, double *ind, int nodes){ |
|
|
327 |
|
|
|
328 |
int i, j; |
|
|
329 |
double lambda=0,squaredWeight=0, lambda1,lambda2; |
|
|
330 |
double *x=(double *)malloc(sizeof(double)*n); |
|
|
331 |
double *ind2=(double *)malloc(sizeof(double)*nodes*3); |
|
|
332 |
int num=0; |
|
|
333 |
|
|
|
334 |
for(i=0;i<n;i++){ |
|
|
335 |
lambda+=v[i]*v[i]; |
|
|
336 |
} |
|
|
337 |
|
|
|
338 |
if ( (int)ind[0]==-1 ) |
|
|
339 |
squaredWeight=n*ind[2]*ind[2]; |
|
|
340 |
else |
|
|
341 |
squaredWeight=ind[2]*ind[2]; |
|
|
342 |
|
|
|
343 |
for (i=1;i<nodes;i++){ |
|
|
344 |
squaredWeight+=ind[3*i+2]*ind[3*i+2]; |
|
|
345 |
} |
|
|
346 |
|
|
|
347 |
/* set lambda to an initial guess |
|
|
348 |
*/ |
|
|
349 |
lambda=sqrt(lambda/squaredWeight); |
|
|
350 |
|
|
|
351 |
/* |
|
|
352 |
printf("\n\n lambda=%2.5f",lambda); |
|
|
353 |
*/ |
|
|
354 |
|
|
|
355 |
/* |
|
|
356 |
*copy ind to ind2, |
|
|
357 |
*and scale the weight 3*i+2 |
|
|
358 |
*/ |
|
|
359 |
for(i=0;i<nodes;i++){ |
|
|
360 |
ind2[3*i]=ind[3*i]; |
|
|
361 |
ind2[3*i+1]=ind[3*i+1]; |
|
|
362 |
ind2[3*i+2]=ind[3*i+2]*lambda; |
|
|
363 |
} |
|
|
364 |
|
|
|
365 |
/* test whether the solution is zero or not |
|
|
366 |
*/ |
|
|
367 |
altra(x, v, n, ind2, nodes); |
|
|
368 |
for(i=0;i<n;i++){ |
|
|
369 |
if (x[i]!=0) |
|
|
370 |
break; |
|
|
371 |
} |
|
|
372 |
|
|
|
373 |
if (i>=n) { |
|
|
374 |
/*x is a zero vector*/ |
|
|
375 |
lambda2=lambda; |
|
|
376 |
lambda1=lambda; |
|
|
377 |
|
|
|
378 |
num=0; |
|
|
379 |
|
|
|
380 |
while(1){ |
|
|
381 |
num++; |
|
|
382 |
|
|
|
383 |
lambda2=lambda; |
|
|
384 |
lambda1=lambda1/2; |
|
|
385 |
/* update ind2 |
|
|
386 |
*/ |
|
|
387 |
for(i=0;i<nodes;i++){ |
|
|
388 |
ind2[3*i+2]=ind[3*i+2]*lambda1; |
|
|
389 |
} |
|
|
390 |
|
|
|
391 |
/* compute and test whether x is zero |
|
|
392 |
*/ |
|
|
393 |
altra(x, v, n, ind2, nodes); |
|
|
394 |
for(i=0;i<n;i++){ |
|
|
395 |
if (x[i]!=0) |
|
|
396 |
break; |
|
|
397 |
} |
|
|
398 |
|
|
|
399 |
if (i<n){ |
|
|
400 |
break; |
|
|
401 |
/*x is not zero |
|
|
402 |
*we have found lambda1 |
|
|
403 |
*/ |
|
|
404 |
} |
|
|
405 |
} |
|
|
406 |
|
|
|
407 |
} |
|
|
408 |
else{ |
|
|
409 |
/*x is a non-zero vector*/ |
|
|
410 |
lambda2=lambda; |
|
|
411 |
lambda1=lambda; |
|
|
412 |
|
|
|
413 |
num=0; |
|
|
414 |
while(1){ |
|
|
415 |
num++; |
|
|
416 |
|
|
|
417 |
lambda1=lambda2; |
|
|
418 |
lambda2=lambda2*2; |
|
|
419 |
/* update ind2 |
|
|
420 |
*/ |
|
|
421 |
for(i=0;i<nodes;i++){ |
|
|
422 |
ind2[3*i+2]=ind[3*i+2]*lambda2; |
|
|
423 |
} |
|
|
424 |
|
|
|
425 |
/* compute and test whether x is zero |
|
|
426 |
*/ |
|
|
427 |
altra(x, v, n, ind2, nodes); |
|
|
428 |
for(i=0;i<n;i++){ |
|
|
429 |
if (x[i]!=0) |
|
|
430 |
break; |
|
|
431 |
} |
|
|
432 |
|
|
|
433 |
if (i>=n){ |
|
|
434 |
break; |
|
|
435 |
/*x is a zero vector |
|
|
436 |
*we have found lambda2 |
|
|
437 |
*/ |
|
|
438 |
} |
|
|
439 |
} |
|
|
440 |
} |
|
|
441 |
|
|
|
442 |
/* |
|
|
443 |
printf("\n num=%d, lambda1=%2.5f, lambda2=%2.5f",num, lambda1,lambda2); |
|
|
444 |
*/ |
|
|
445 |
|
|
|
446 |
while ( fabs(lambda2-lambda1) > lambda2 * 1e-10 ){ |
|
|
447 |
|
|
|
448 |
num++; |
|
|
449 |
|
|
|
450 |
lambda=(lambda1+lambda2)/2; |
|
|
451 |
|
|
|
452 |
/* update ind2 |
|
|
453 |
*/ |
|
|
454 |
for(i=0;i<nodes;i++){ |
|
|
455 |
ind2[3*i+2]=ind[3*i+2]*lambda; |
|
|
456 |
} |
|
|
457 |
|
|
|
458 |
/* compute and test whether x is zero |
|
|
459 |
*/ |
|
|
460 |
altra(x, v, n, ind2, nodes); |
|
|
461 |
for(i=0;i<n;i++){ |
|
|
462 |
if (x[i]!=0) |
|
|
463 |
break; |
|
|
464 |
} |
|
|
465 |
|
|
|
466 |
if (i>=n){ |
|
|
467 |
lambda2=lambda; |
|
|
468 |
} |
|
|
469 |
else{ |
|
|
470 |
lambda1=lambda; |
|
|
471 |
} |
|
|
472 |
|
|
|
473 |
/* |
|
|
474 |
printf("\n lambda1=%2.5f, lambda2=%2.5f",lambda1,lambda2); |
|
|
475 |
*/ |
|
|
476 |
} |
|
|
477 |
|
|
|
478 |
/* |
|
|
479 |
printf("\n num=%d",num); |
|
|
480 |
|
|
|
481 |
printf(" lambda1=%2.5f, lambda2=%2.5f",lambda1,lambda2); |
|
|
482 |
|
|
|
483 |
*/ |
|
|
484 |
|
|
|
485 |
*lambdaMax=lambda2; |
|
|
486 |
|
|
|
487 |
free(x); |
|
|
488 |
free(ind2); |
|
|
489 |
} |
|
|
490 |
|
|
|
491 |
|
|
|
492 |
/* |
|
|
493 |
* findLambdaMax_mt is a generalization of findLambdaMax to the |
|
|
494 |
* |
|
|
495 |
* multi-task learning scenario (or equivalently the multi-class case) |
|
|
496 |
* |
|
|
497 |
* lambdaMax=findLambdaMax_mt(X, V, n, k, ind, nodes); |
|
|
498 |
* |
|
|
499 |
* It applies findLambdaMax for each row (1xk) of X and V |
|
|
500 |
* |
|
|
501 |
*/ |
|
|
502 |
|
|
|
503 |
|
|
|
504 |
void findLambdaMax_mt(double *lambdaMax, double *V, int n, int k, double *ind, int nodes){ |
|
|
505 |
int i, j; |
|
|
506 |
|
|
|
507 |
double *v=(double *)malloc(sizeof(double)*k); |
|
|
508 |
double lambda; |
|
|
509 |
|
|
|
510 |
*lambdaMax=0; |
|
|
511 |
|
|
|
512 |
for (i=0;i<n;i++){ |
|
|
513 |
/* |
|
|
514 |
* copy a row of V to v |
|
|
515 |
* |
|
|
516 |
*/ |
|
|
517 |
for(j=0;j<k;j++) |
|
|
518 |
v[j]=V[j*n + i]; |
|
|
519 |
|
|
|
520 |
findLambdaMax(&lambda, v, k, ind, nodes); |
|
|
521 |
|
|
|
522 |
/* |
|
|
523 |
printf("\n lambda=%5.2f",lambda); |
|
|
524 |
*/ |
|
|
525 |
|
|
|
526 |
if (lambda>*lambdaMax) |
|
|
527 |
*lambdaMax=lambda; |
|
|
528 |
} |
|
|
529 |
|
|
|
530 |
/* |
|
|
531 |
printf("\n *lambdaMax=%5.2f",*lambdaMax); |
|
|
532 |
*/ |
|
|
533 |
|
|
|
534 |
free(v); |
|
|
535 |
} |
|
|
536 |
|