[95bb1e]: / STM_HFS.m

Download this file

355 lines (306 with data), 11.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
function [Sol_MT] = STM_HFS(Xs, ys, Lambda, opts)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Implementation of the sequential HFS rule for STM
%% input:
% Xs:
% Xs{i} stores the data matrix of the i-th task, each column corresponds to a feature
% each row corresponds to a data instance
%
% ys:
% ys{i} strores the response vector of the i-th task
%
% Lambda:
% the parameter values of lambda
%
% opts:
% settings for the solver
%% output:
% Sol:
% the solution; Sol(:,:,i) stores the the
% solution for the ith values in Lambda
%
%% For any problem, please contact Weizhong Zhang (zhangweizhongzju@gmail.com)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
% -------------------------- pass parameters ---------------------------- %
p = size(Xs{1}, 2);
T_num = length(Xs); % number of tasks
npar = length(Lambda); % number of parameter values of lambda
ind = opts.ind;
ind_MT = TreeTransform(ind, T_num);
%clear('ind');
opts.init=1; % starting from a zero point
if opts.tFlag==2
funVal = opts.funVal;
end
% --------------------- recover tree structure for Multi Task-------------------------- %
eind_MT = find(ind_MT(2,:) == p*T_num);
if ind_MT(1,1) == -1 % find the depth of the tree
d_MT = length(eind_MT);
nnl_MT = [p*T_num,eind_MT(1)-1,diff(eind_MT)]; % number of nodes per layer
nnind_MT = [0,1,eind_MT]; % ind(1,nnind1(i)+1:nnind(i+1)) stores the node from the ith layer
else
d_MT = length(eind_MT)-1;
nnl_MT = [eind_MT(1),diff(eind_MT)];
nnind_MT = [0,eind_MT];
end
% --------------------- initialize the output --------------------------- %
Sol_MT = zeros(p,T_num,npar);
ind_zf_MT = false(p*T_num,d_MT,npar);
tsolver_MT = zeros(1,npar);%should be changed
tscreen_MT = zeros(1,npar);
% ------------------- compute the effective region of lambda ------------ %
Xsys_MT = Xsys_MT_cal(Xs, ys);
%lambda_max=findLambdaMax(X'*y, p, ind, size(ind,2)); % why?
lambda_max=findLambdaMax(Xsys_MT, p*T_num, ind_MT, size(ind_MT,2));
%lambda_max1=findLambdaMax(Xsys_MT, p*T_num, ind, size(ind,2));
if opts.rFlag == 1
Lambda = Lambda * lambda_max;
opts.rFlag = 0;
end
[Lambdav,Lambda_ind] = sort(Lambda,'descend');
% --------- compute the norm of each feature and each submatrix ---------
Xnorm_MT = zeros(size(Xs{1},2)*T_num,1);
idx_row = [0:size(Xs{1},2)-1]*T_num+1;
for idx_t = 1:T_num
Xnorm_MT(idx_row) = (sqrt(sum(Xs{idx_t}.^2,1)))';
idx_row = idx_row +1;
end
ng_MT = size(ind_MT,2);
Xgnorm_MT = zeros(1,ng_MT);
gind_MT = zeros(d_MT,p*T_num);
if ind_MT(1,1)==-1
j = 2;
l = 2;
else
l = 1;
j = 1;
end
k = 1;
for i = j : ng_MT-1
for idx_t = 1: length(Xs)
if(idx_t ==1)
Xgnorm_MT(i) = norm(Xs{idx_t}(:,((ind_MT(1,i)-1)/T_num+1):(ind_MT(2,i)/T_num)));
else
Xgnorm_MT(i)= max(Xgnorm_MT(i),norm(Xs{idx_t}(:,((ind_MT(1,i)-1)/T_num+1):(ind_MT(2,i)/T_num))));
end
end
gind_MT(l,ind_MT(1,i):ind_MT(2,i)) = k;
k = k + 1;
if ind_MT(2,i)==p*T_num
k = 1;
l = l + 1;
end
end
% ------- construct sparse matrix to vectorize the computation ----------
Gind_MT = cell(1,d_MT);
if ind_MT(1,1) == -1
j = 2;
else
j = 1;
end
for i = j:d_MT
Gind_MT{1,i} = sparse(gind_MT(i,:),1:p*T_num,ones(1,p*T_num),nnl_MT(i),p*T_num);
end
% --------------- put Xgnorm and weights in tree structure ---------------
XgnormTree_MT = zeros(p*T_num,d_MT);
weightTree_MT = zeros(p*T_num,d_MT);
for i = 1:d_MT
if ind_MT(1,1)==-1&&i==1
XgnormTree_MT(:,i) = Xnorm_MT;
weightTree_MT(:,i) = ind_MT(3,1);
else
G_MT = Gind_MT{1,i};
XgnormTree_MT(:,i) = G_MT'*(Xgnorm_MT(nnind_MT(i)+1:nnind_MT(i+1)))';
weightTree_MT(:,i) = G_MT'*(ind_MT(3,nnind_MT(i)+1:nnind_MT(i+1)))';
end
end
% ----------- solve STM sequentially via HFS ------------------
opts.rFlag = 0; % the input parameters are their true values
s_MT = zeros(p*T_num,1);
c2_MT = zeros(p*T_num,1);
minn_MT = zeros(p*T_num,1);
rLambdav = 1./Lambdav;
lambdap = Lambdav(1);
rlambdap = rLambdav(1);
vnormTree_MT = zeros(p*T_num,d_MT);
tol0 = 1e-12;
for i = 1:npar
%fprintf('in HFS step: %d\n',i);
lambdac = Lambdav(1,i);
rlambdac = rLambdav(1,i);
if lambdac>=lambda_max
ind_zf_MT(:,:,Lambda_ind(i)) = true;
else
starts_screening =tic;
if lambdap==lambda_max
theta_MT = [];
for idx_t = 1: length(ys)
theta_MT = [theta_MT; ys{idx_t}*rlambdap];
end
z_MT = Xsys_MT*rlambdap;
[u_MT, v_MT] = Hierarchical_Projection( z_MT, ind_MT, nnind_MT, Gind_MT );
if ind_MT(3,end)==0
weightd_MT = (ind_MT(3,nnind_MT(d_MT)+1:nnind_MT(d_MT+1)))';
[~,Xmxind_MT] = min(abs(Gind_MT{1,d_MT}*(v_MT(:,d_MT).*v_MT(:,d_MT))-weightd_MT.*weightd_MT));
idx_column_MT = [ind_MT(1,nnind_MT(d_MT)+Xmxind_MT):ind_MT(2,nnind_MT(d_MT)+Xmxind_MT)];
nv_MT = [];
idx_column_X = [(idx_column_MT(end)/T_num)-(length(idx_column_MT)/T_num)+1:(idx_column_MT(end)/T_num)];
for idx_t = 1:length(ys)
idx_column = idx_column_MT(idx_t:T_num:end);
nv_MT = [nv_MT; Xs{idx_t}(:,idx_column_X)*v_MT(idx_column,d_MT)];
end
else
nv_MT = [];
for idx_t = 1:length(ys)
idx_column = [idx_t:T_num:lenght(v_MT)];
nv_MT = [nv_MT; Xs{idx_t}*v_MT(idx_column,end)];
end
end
else
theta_MT = [];
y_all = [];
for idx_t = 1:length(ys)
theta_MT = [theta_MT;(ys{idx_t} - Xs{idx_t}*Sol_MT(:,idx_t,Lambda_ind(i-1)))*rlambdap];
y_all = [y_all; ys{idx_t}];
end
nv_MT = y_all*rlambdap-theta_MT;
end
% ----- estimate the possible region of the dual optimum at lambdac
nv_MT = nv_MT/norm(nv_MT);
%rv = y*rlambdac-theta;
rv_MT = [];
for idx_t = 1:length(ys)
rv_MT = [rv_MT;ys{idx_t}*rlambdac];
end
rv_MT = rv_MT-theta_MT;
Prv_MT = rv_MT - (nv_MT'*rv_MT)*nv_MT;
o_MT = theta_MT + 0.5*Prv_MT;
r_MT = 0.5*norm(Prv_MT);
% ----- screening by MLFre, remove the ith feature if T(i)=1 ---- %
c_MT = zeros(p*T_num,1);
idx_row = (0:size(Xs{1},2)-1)*length(Xs)+1;
for idx_t = 1:length(ys)
c_MT(idx_row) = Xs{idx_t}'*o_MT((idx_t-1)*length(ys{1})+1:idx_t*length(ys{1}));
idx_row = idx_row+1;
end
[u_MT, v_MT] = Hierarchical_Projection( c_MT, ind_MT, nnind_MT, Gind_MT );
v2_MT = v_MT.*v_MT;
for l = 1:d_MT % compute norm of v for each node and arrange them based on the tree structure
if l==1&&ind_MT(1,1)==-1
vnormTree_MT(:,l) = abs(v_MT(:,l));
else
G_MT = Gind_MT{1,l};
vnormTree_MT(:,l)=G_MT'*sqrt(G_MT*v2_MT(:,l));
end
end
csDifwv_MT = cumsum(weightTree_MT-vnormTree_MT);
T_MT = false(p*T_num,1); % identify non-leaf inactive nodes
for l = d_MT:-1:2
Tl_MT = ~T_MT; % find the indices of the remaining features
% case 1
Tc_MT = false(p*T_num,1);
Tc_MT(Tl_MT) = vnormTree_MT(Tl_MT,l)>tol0;
if nnz(Tc_MT)>0
s_MT(Tc_MT) = vnormTree_MT(Tc_MT,l)+r_MT*XgnormTree_MT(Tc_MT,l);
end
% case 2 & 3
if nnz(Tc_MT)<nnz(Tl_MT) % if not all remaining nodes in level l fall in case 1
Tcc_MT = false(p*T_num,1);
Tcc_MT(Tl_MT) = ~Tc_MT(Tl_MT);
lind_MT = nnind_MT(l)+1:nnind_MT(l+1);
G_MT = Gind_MT{1,l};
Tn_MT = G_MT*Tcc_MT==(ind_MT(2,lind_MT)-ind_MT(1,lind_MT)+1)';
indl_MT = ind_MT(:,lind_MT);
indlr_MT = indl_MT(:,Tn_MT);
for n = 1:nnz(Tn_MT)
minn_MT(n)=min(csDifwv_MT(indlr_MT(1,n):indlr_MT(2,n),l-1));
end
sdist_MT = (G_MT(Tn_MT,:))'*minn_MT(1:nnz(Tn_MT));
s_MT(Tcc_MT) = max(0,r_MT*XgnormTree_MT(Tcc_MT,l)-sdist_MT(Tcc_MT));
end
ind_zf_MT(Tl_MT,l,Lambda_ind(i))=s_MT(Tl_MT)<weightTree_MT(Tl_MT,l);
T_MT = T_MT|ind_zf_MT(:,l,Lambda_ind(i));
end
Tl_MT = ~T_MT; % identify inactive leaf nodes
if ind_MT(1,1)==-1
s_MT(Tl_MT) = abs(c_MT(Tl_MT))+r_MT*Xnorm_MT(Tl_MT);
ind_zf_MT(Tl_MT,1,Lambda_ind(i))=s_MT(Tl_MT)<ind_MT(3,1);
else
G_MT = Gind_MT{1,1};
lind_MT = nnind_MT(1)+1:nnind_MT(2);
Tn_MT = G_MT*Tl_MT == (ind_MT(2,lind_MT)-ind_MT(1,lind_MT)+1)';
c2_MT(Tl_MT) = c_MT(Tl_MT).*c_MT(Tl_MT);
cnorm_MT = (G_MT(Tn_MT,:))'*sqrt(G_MT(Tn_MT,:)*c2_MT);
s_MT(Tl_MT) = cnorm_MT(Tl_MT)+r_MT*XgnormTree_MT(Tl_MT,1);
ind_zf_MT(Tl_MT,1,Lambda_ind(i))=s_MT(Tl_MT)<weightTree_MT(Tl_MT,1);
end
T_MT = T_MT|ind_zf_MT(:,1,Lambda_ind(i));
nT_MT = ~T_MT;
%Xr = X(:,nT);
nT_MT_X = nT_MT(1:T_num:end);
for idx_t = 1:T_num
Xrs{idx_t} = Xs{idx_t}(:,nT_MT_X);
end
if lambdap == lambda_max
opts.x0 = zeros(nnz(nT_MT_X)*T_num,1);
else
x0_Matrix = Sol_MT(nT_MT_X,:,Lambda_ind(i-1));
x0_temp =zeros(size(x0_Matrix,1)*T_num,1);
idx_row = [0:size(x0_Matrix,1)-1]*T_num+1;
for idx_t = 1:T_num
x0_temp(idx_row) = x0_Matrix(:,idx_t);
idx_row = idx_row+1;
end
opts.x0 = x0_temp;
end
% ------------ construct the reduced tree ---------------
Tind_MT = false(ng_MT,1);
nnlr_MT = zeros(1,d_MT+1);
nnlr_MT(end) = 1;
if ind_MT(1,1)==-1
j=2;
nnlr_MT(1)=nnz(nT_MT);
else
j=1;
end
for l = j:d_MT
lind_MT = nnind_MT(l)+1:nnind_MT(l+1);
Tind_MT(lind_MT) = Gind_MT{1,l}*T_MT==(ind_MT(2,lind_MT)-ind_MT(1,lind_MT)+1)';
nnlr_MT(l)=nnz(~Tind_MT(lind_MT));
end
if ind_MT(1,1)==-1
nnindr_MT=[0,1,cumsum(nnlr_MT(2:end))+1];
else
nnindr_MT=[0,cumsum(nnlr_MT)];
end
indr_MT = ind_MT(:,~Tind_MT);
mapinde_MT = cumsum(nT_MT);
mapinds_MT = nnz(nT_MT)+1-cumsum(nT_MT,'reverse');
for l=j:d_MT+1
lind_MT = nnindr_MT(l)+1:nnindr_MT(l+1);
oind1_MT = indr_MT(1,lind_MT);
oind2_MT = indr_MT(2,lind_MT);
indr_MT(1,lind_MT) = mapinds_MT(oind1_MT);
indr_MT(2,lind_MT) = mapinde_MT(oind2_MT);
end
opts.ind_MT = indr_MT;
% --- solve the STM problem on the reduced data matrix -- %
if opts.tFlag == 2
opts.tol = funVal(Lambda_ind(i));
end
tscreen_MT(Lambda_ind(i)) = toc(starts_screening);
starts = tic;
[x1, ~, ~]= tree_LeastR_MT(Xrs, ys, lambdac, opts);
tsolver_MT(Lambda_ind(i)) = toc(starts);
nT_MT_temp = nT_MT(1:T_num:end);
idx_row= [1:T_num:length(x1)];
for idx_t = 1:T_num
Sol_MT(nT_MT_temp,idx_t,Lambda_ind(i)) = x1(idx_row);
idx_row = idx_row +1;
end
end
lambdap = lambdac;
rlambdap = rlambdac;
end
end