# General
import numpy as np
import random
import argparse
import os
from copy import deepcopy
from pathlib import Path
import sys
from datetime import datetime
# Pytorch
import torch
import torch.nn as nn
# Pytorch Lightning
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
# Pytorch Geo
from torch_geometric.data.sampler import NeighborSampler as PyGeoNeighborSampler
from torch_geometric.data import Data, DataLoader
# W&B
import wandb
sys.path.insert(0, '..') # add project_config to path
# Own code
import preprocess
from node_embedder_model import NodeEmbeder
import project_config
from hparams import get_pretrain_hparams
from samplers import NeighborSampler
def parse_args():
parser = argparse.ArgumentParser(description="Learn node embeddings.")
# Input files/parameters
parser.add_argument("--edgelist", type=str, default=None, help="File with edge list")
parser.add_argument("--node_map", type=str, default=None, help="File with node list")
parser.add_argument('--save_dir', type=str, default=None, help='Directory for saving files')
# Tunable parameters
parser.add_argument('--nfeat', type=int, default=2048, help='Dimension of embedding layer')
parser.add_argument('--hidden', default=256, type=int)
parser.add_argument('--output', default=128, type=int)
parser.add_argument('--n_heads', default=4, type=int)
parser.add_argument('--wd', default=0.0, type=float)
parser.add_argument('--dropout', type=float, default=0.3, help='Dropout')
parser.add_argument('--lr', default=0.0001, type=float)
parser.add_argument('--max_epochs', default=1000, type=int)
# Resume with best checkpoint
parser.add_argument('--resume', default="", type=str)
parser.add_argument('--best_ckpt', type=str, default=None, help='Name of the best performing checkpoint')
# Output
parser.add_argument('--save_embeddings', action='store_true')
args = parser.parse_args()
return args
def get_dataloaders(hparams, all_data):
print('get dataloaders')
train_dataloader = NeighborSampler('train', all_data.edge_index[:,all_data.train_mask], all_data.edge_index[:,all_data.train_mask], sizes = hparams['neighbor_sampler_sizes'], batch_size = hparams['batch_size'], shuffle = True, num_workers=hparams['num_workers'], do_filter_edges=hparams['filter_edges'])
val_dataloader = NeighborSampler('val', all_data.edge_index[:,all_data.train_mask], all_data.edge_index[:,all_data.val_mask], sizes = hparams['neighbor_sampler_sizes'], batch_size = hparams['batch_size'], shuffle = False, num_workers=hparams['num_workers'], do_filter_edges=hparams['filter_edges'])
test_dataloader = NeighborSampler('test', all_data.edge_index[:,all_data.train_mask], all_data.edge_index[:,all_data.test_mask], sizes = hparams['neighbor_sampler_sizes'], batch_size = hparams['batch_size'], shuffle = False, num_workers=hparams['num_workers'], do_filter_edges=hparams['filter_edges'])
return train_dataloader, val_dataloader, test_dataloader
def train(args, hparams):
# Seed
pl.seed_everything(hparams['seed'])
# Read input data
all_data, edge_attr_dict, nodes = preprocess.preprocess_graph(args)
# Set up
if args.resume != "":
if ":" in args.resume: # colons are not allowed in ID/resume name
resume_id = "_".join(args.resume.split(":"))
run_name = args.resume
wandb_logger = WandbLogger(run_name, project='kg-train', entity='rare_disease_dx', save_dir=hparams['wandb_save_dir'], id=resume_id, resume=resume_id)
model = NodeEmbeder.load_from_checkpoint(checkpoint_path=str(Path(args.save_dir) / 'checkpoints' / args.best_ckpt),
all_data=all_data, edge_attr_dict=edge_attr_dict,
num_nodes=len(nodes["node_idx"].unique()), combined_training=False)
else:
curr_time = datetime.now().strftime("%H:%M:%S")
run_name = f"{curr_time}_run"
wandb_logger = WandbLogger(run_name, project='kg-train', entity='rare_disease_dx', save_dir=hparams['wandb_save_dir'], id="_".join(run_name.split(":")), resume="allow")
model = NodeEmbeder(all_data, edge_attr_dict, hp_dict=hparams, num_nodes=len(nodes["node_idx"].unique()), combined_training=False)
checkpoint_callback = ModelCheckpoint(monitor='val/node_total_acc', dirpath=Path(args.save_dir) / 'checkpoints', filename=f'{run_name}' + '_{epoch}', save_top_k=1, mode='max')
lr_monitor = LearningRateMonitor(logging_interval='step')
wandb_logger.watch(model, log='all')
if hparams['debug']:
limit_train_batches = 1
limit_val_batches = 1.0
hparams['max_epochs'] = 3
else:
limit_train_batches = 1.0
limit_val_batches = 1.0
trainer = pl.Trainer(gpus=hparams['n_gpus'], logger=wandb_logger,
max_epochs=hparams['max_epochs'],
callbacks=[checkpoint_callback, lr_monitor],
gradient_clip_val=hparams['gradclip'],
profiler=hparams['profiler'],
log_every_n_steps=hparams['log_every_n_steps'],
limit_train_batches=limit_train_batches,
limit_val_batches=limit_val_batches,
)
train_dataloader, val_dataloader, test_dataloader = get_dataloaders(hparams, all_data)
# Train
trainer.fit(model, train_dataloader, val_dataloader)
# Test
trainer.test(ckpt_path='best', test_dataloaders=test_dataloader)
@torch.no_grad()
def save_embeddings(args, hparams):
print('Saving Embeddings')
# Seed
pl.seed_everything(hparams['seed'])
# Read input data
all_data, edge_attr_dict, nodes = preprocess.preprocess_graph(args)
all_data.num_nodes = len(nodes["node_idx"].unique())
model = NodeEmbeder.load_from_checkpoint(checkpoint_path=str(Path(args.save_dir) / 'checkpoints' / args.best_ckpt),
all_data=all_data, edge_attr_dict=edge_attr_dict,
num_nodes=len(nodes["node_idx"].unique()), combined_training=False)
dataloader = DataLoader([all_data], batch_size=1)
trainer = pl.Trainer(gpus=0,
gradient_clip_val=hparams['gradclip']
)
embeddings = trainer.predict(model, dataloaders=dataloader)
embed_path = Path(args.save_dir) / (str(args.best_ckpt).split('.ckpt')[0] + '.embed')
torch.save(embeddings[0], str(embed_path))
print(embeddings[0].shape)
if __name__ == "__main__":
# Get hyperparameters
args = parse_args()
hparams = get_pretrain_hparams(args, combined=False)
if args.save_embeddings:
# save node embeddings from a trained model
save_embeddings(args, hparams)
else:
# Train model
train(args, hparams)