[bdbb47]: / shepherd / gene_prioritization_model.py

Download this file

544 lines (427 with data), 36.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
#pytorch lightning
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
# torch
from torch import nn
import torch
import torch.nn.functional as F
import numpy as np
from scipy.stats import rankdata
import pandas as pd
from pathlib import Path
import time
import wandb
import sys
sys.path.insert(0, '..') # add project_config to path
from node_embedder_model import NodeEmbeder
from task_heads.gp_aligner import GPAligner
import project_config
# import utils
from utils.pretrain_utils import get_edges, calc_metrics
from utils.loss_utils import MultisimilarityCriterion
from utils.train_utils import mean_reciprocal_rank, top_k_acc, average_rank
from utils.train_utils import fit_umap, mrr_vs_percent_overlap, plot_gene_rank_vs_x_intrain, plot_gene_rank_vs_hops, plot_degree_vs_attention, plot_nhops_to_gene_vs_attention, plot_gene_rank_vs_fraction_phenotype, plot_gene_rank_vs_numtrain, plot_gene_rank_vs_trainset
from utils.train_utils import weighted_sum
class CombinedGPAligner(pl.LightningModule):
def __init__(self, edge_attr_dict, all_data, n_nodes=None, node_ckpt=None, hparams=None, node_hparams=None, spl_pca=[], spl_gate=[]):
super().__init__()
print('Initializing Model')
self.save_hyperparameters('hparams', ignore=["spl_pca", "spl_gate"]) # spl_pca and spl_gate never get used
#print('Saved combined model hyperparameters: ', self.hparams)
self.all_data = all_data
self.all_train_nodes = {}
self.train_patient_nodes = {}
self.train_sparse_nodes = {}
self.train_target_batch = {}
self.train_corr_gene_nid = {}
print(f"Loading Node Embedder from {node_ckpt}")
# NOTE: loads in saved hyperparameters
self.node_model = NodeEmbeder.load_from_checkpoint(checkpoint_path=node_ckpt,
all_data=all_data,
edge_attr_dict=edge_attr_dict,
num_nodes=n_nodes)
self.patient_model = self.get_patient_model()
print('End Patient Model Initialization')
def get_patient_model(self):
# NOTE: this will only work with GATv2Conv
model = GPAligner(self.hparams.hparams, embed_dim=self.node_model.hparams.hp_dict['output']*self.node_model.hparams.hp_dict['n_heads'])
return model
def forward(self, batch, step_type):
# Node Embedder
t0 = time.time()
print(len(batch.adjs))
outputs, gat_attn = self.node_model.forward(batch.n_id, batch.adjs)
pad_outputs = torch.cat([torch.zeros(1, outputs.size(1), device=outputs.device), outputs])
t1 = time.time()
# get masks
phenotype_mask = (batch.batch_pheno_nid != 0)
gene_mask = (batch.batch_cand_gene_nid != 0)
# index into outputs using phenotype & gene batch node idx
batch_sz, max_n_phen = batch.batch_pheno_nid.shape
phenotype_embeddings = torch.index_select(pad_outputs, 0, batch.batch_pheno_nid.view(-1)).view(batch_sz, max_n_phen, -1)
batch_sz, max_n_cand_genes = batch.batch_cand_gene_nid.shape
cand_gene_embeddings = torch.index_select(pad_outputs, 0, batch.batch_cand_gene_nid.view(-1)).view(batch_sz, max_n_cand_genes, -1)
if self.hparams.hparams['augment_genes']:
print("Augmenting genes...", self.hparams.hparams['aug_gene_w'])
_, max_n_sim_cand_genes, k_sim_genes = batch.batch_sim_gene_nid.shape
sim_gene_embeddings = torch.index_select(pad_outputs, 0, batch.batch_sim_gene_nid.view(-1)).view(batch_sz, max_n_sim_cand_genes, self.hparams.hparams['n_sim_genes'], -1)
agg_sim_gene_embedding = weighted_sum(sim_gene_embeddings, batch.batch_sim_gene_sims)
if self.hparams.hparams['aug_gene_by_deg']:
print("Augmenting gene by degree...")
aug_gene_w = self.hparams.hparams['aug_gene_w'] * torch.exp(-self.hparams.hparams['aug_gene_w'] * batch.batch_cand_gene_degs) + (1 - self.hparams.hparams['aug_gene_w'] - 0.1)
aug_gene_w = (aug_gene_w * (torch.sum(batch.batch_sim_gene_sims, dim = -1) > 0)).unsqueeze(-1)
else:
aug_gene_w = (self.hparams.hparams['aug_gene_w'] * (torch.sum(batch.batch_sim_gene_sims, dim = -1) > 0)).unsqueeze(-1)
cand_gene_embeddings = torch.mul(1 - aug_gene_w, cand_gene_embeddings) + torch.mul(aug_gene_w, agg_sim_gene_embedding)
# Patient Embedder with or without disease information
if self.hparams.hparams['use_diseases']:
disease_mask = (batch.batch_disease_nid != 0)
batch_sz, max_n_dx = batch.batch_disease_nid.shape
disease_embeddings = torch.index_select(pad_outputs, 0, batch.batch_disease_nid.view(-1)).view(batch_sz, max_n_dx, -1)
t2 = time.time()
phenotype_embedding, candidate_gene_embeddings, disease_embeddings, gene_mask, phenotype_mask, disease_mask, attn_weights = self.patient_model.forward(phenotype_embeddings, cand_gene_embeddings, disease_embeddings, phenotype_mask, gene_mask, disease_mask)
t3 = time.time()
else:
t2 = time.time()
phenotype_embedding, candidate_gene_embeddings, disease_embeddings, gene_mask, phenotype_mask, disease_mask, attn_weights = self.patient_model.forward(phenotype_embeddings, cand_gene_embeddings, phenotype_mask=phenotype_mask, gene_mask=gene_mask)
t3 = time.time()
if self.hparams.hparams['time']:
print(f'It takes {t1-t0:0.4f}s for the node model, {t2-t1:0.4f}s for indexing into the output, and {t3-t2:0.4f}s for the patient model forward.')
return outputs, gat_attn, phenotype_embedding, candidate_gene_embeddings, disease_embeddings, gene_mask, phenotype_mask, disease_mask, attn_weights
def _step(self, batch, step_type):
t0 = time.time()
if step_type != 'test':
batch = get_edges(batch, self.all_data, step_type)
t1 = time.time()
# Forward pass
node_embeddings, gat_attn, phenotype_embedding, candidate_gene_embeddings, disease_embeddings, gene_mask, phenotype_mask, disease_mask, attn_weights = self.forward(batch, step_type)
t2 = time.time()
# Calculate similarities between patient phenotypes & candidate genes/diseases
alpha = self.hparams.hparams['alpha']
use_candidate_list = True if step_type != 'train' else False
cand_gene_to_phenotypes_spl = batch.batch_cand_gene_to_phenotypes_spl if use_candidate_list else batch.batch_concat_cand_gene_to_phenotypes_spl
disease_nid = batch.batch_disease_nid if self.hparams.hparams['use_diseases'] else None
# calculate similarity between phen & genes for all genes in manual candidate list
phen_gene_sims, raw_phen_gene_sims, phen_gene_mask, phen_gene_one_hot_labels = self.patient_model._calc_similarity(phenotype_embedding, candidate_gene_embeddings, None, batch.batch_cand_gene_nid, batch.batch_corr_gene_nid, disease_nid, batch.one_hot_labels, gene_mask, phenotype_mask, disease_mask, True, batch.batch_cand_gene_to_phenotypes_spl, alpha)
# calculate similarity for loss function
if self.hparams.hparams['loss'] == 'gene_multisimilarity' and use_candidate_list: # in this case, the similarities are the same
sims = phen_gene_sims
mask = phen_gene_mask
one_hot_labels = phen_gene_one_hot_labels
else:
if self.hparams.hparams['loss'] == 'disease_multisimilarity': candidate_gene_embeddings = None
elif self.hparams.hparams['loss'] == 'gene_multisimilarity': disease_embeddings = None
sims, raw_sims, mask, one_hot_labels = self.patient_model._calc_similarity(phenotype_embedding, candidate_gene_embeddings, disease_embeddings, batch.batch_cand_gene_nid, batch.batch_corr_gene_nid, disease_nid, batch.one_hot_labels, gene_mask, phenotype_mask, disease_mask, use_candidate_list, cand_gene_to_phenotypes_spl, alpha)
## Rank genes
correct_gene_ranks, phen_gene_sims = self.patient_model._rank_genes(phen_gene_sims, phen_gene_mask, phen_gene_one_hot_labels)
t3 = time.time()
## Calculate patient embedding loss
loss = self.patient_model.calc_loss(sims, mask, one_hot_labels)
t4 = time.time()
## Calculate node embedding loss
if step_type == 'test':
node_embedder_loss = 0
roc_score, ap_score, acc, f1 = 0,0,0,0
else:
# Get link predictions
batch, raw_pred, pred = self.node_model.get_predictions(batch, node_embeddings)
link_labels = self.node_model.get_link_labels(batch.all_edge_types)
node_embedder_loss = self.node_model.calc_loss(pred, link_labels)
# Calculate metrics
metric_pred = torch.sigmoid(raw_pred)
roc_score, ap_score, acc, f1 = calc_metrics(metric_pred.cpu().detach().numpy(), link_labels.cpu().detach().numpy())
t5 = time.time()
## calc time
if self.hparams.hparams['time']:
print(f'It takes {t1-t0:0.4f}s to get edges, {t2-t1:0.4f}s for the forward pass, {t3-t2:0.4f}s to rank genes, {t4-t3:0.4f}s to calc patient loss, and {t5-t4:0.4f}s to calc the node loss.')
## Plot gradients
if self.hparams.hparams['plot_gradients']:
for k, v in self.patient_model.state_dict().items():
self.logger.experiment.log({f'gradients/{step_type}.gradients.%s' % k: wandb.Histogram(v.detach().cpu())})
return node_embedder_loss, loss, correct_gene_ranks, roc_score, ap_score, acc, f1, node_embeddings, gat_attn, phenotype_embedding, candidate_gene_embeddings, attn_weights, phen_gene_sims, raw_phen_gene_sims, gene_mask, phenotype_mask
def training_step(self, batch, batch_idx):
print('training step')
node_embedder_loss, patient_loss, correct_gene_ranks, roc_score, ap_score, acc, f1, node_embeddings, gat_attn, phenotype_embedding, candidate_gene_embeddings, attn_weights, phen_gene_sims, raw_phen_gene_sims, gene_mask, phenotype_mask = self._step(batch, 'train')
loss = (self.hparams.hparams['lambda'] * node_embedder_loss) + ((1 - self.hparams.hparams['lambda']) * patient_loss)
self.log('train_loss/patient.train_overall_loss', loss, prog_bar=True, on_epoch=True)
self.log('train_loss/patient.train_patient_loss', patient_loss, prog_bar=True, on_epoch=True)
self.log('train_loss/patient.train_node_embedder_loss', node_embedder_loss, prog_bar=True, on_epoch=True)
batch_sz, n_candidates, embed_dim = candidate_gene_embeddings.shape
candidate_gene_embeddings_flattened = candidate_gene_embeddings.view(batch_sz*n_candidates, embed_dim)
one_hot_labels_flattened = batch.one_hot_labels.view(batch_sz*n_candidates)
return {'loss': loss,
'train/train_correct_gene_ranks': correct_gene_ranks,
"train/node.train_roc": roc_score,
"train/node.train_ap": ap_score,
"train/node.train_acc": acc,
"train/node.train_f1": f1,
'train/one_hot_labels': batch.one_hot_labels.detach().cpu(),
'train/attention_weights': attn_weights.detach().cpu() if attn_weights != None else None,
'train/phen_gene_sims': phen_gene_sims.detach().cpu(),
'train/phenotype_names_degrees': batch.phenotype_names,
}
def validation_step(self, batch, batch_idx):
node_embedder_loss, patient_loss, correct_gene_ranks, roc_score, ap_score, acc, f1, node_embeddings, gat_attn, phenotype_embedding, candidate_gene_embeddings, attn_weights, phen_gene_sims, raw_phen_gene_sims, gene_mask, phenotype_mask = self._step(batch, 'val')
loss = (self.hparams.hparams['lambda'] * node_embedder_loss) + ((1 - self.hparams.hparams['lambda']) * patient_loss)
self.log('val_loss/patient.val_overall_loss', loss, prog_bar=True, on_epoch=True)
self.log('val_loss/patient.val_patient_loss', patient_loss, prog_bar=True)
self.log('val_loss/patient.val_node_embedder_loss', node_embedder_loss, prog_bar=True)
return {'loss/val_loss': loss,
'val/val_correct_gene_ranks': correct_gene_ranks,
"val/node.val_roc": roc_score,
"val/node.val_ap": ap_score,
"val/node.val_acc": acc,
"val/node.val_f1": f1,
'val/one_hot_labels': batch.one_hot_labels.detach().cpu(),
'val/attention_weights': attn_weights.detach().cpu() if attn_weights != None else None,
'val/phen_gene_sims': phen_gene_sims.detach().cpu(),
'val/phenotype_names_degrees': batch.phenotype_names,
}
def write_results_to_file(self, batch_info, phen_gene_sims, gene_mask, phenotype_mask, attn_weights, correct_gene_ranks, gat_attn, node_embeddings, phenotype_embeddings, save=True, loop_type='predict'):
# NOTE: only saves a single batch - to run at inference time, make sure batch size includes all patients
# Save GAT attention weights
#NOTE: assumes 3 layers to model
attn_dfs = []
layer = 0
for edge_attn in gat_attn:
edge_index, attn = edge_attn
edge_index = edge_index.cpu()
attn = attn.cpu()
gat_attn_df = pd.DataFrame({'source': edge_index[0,:], 'target': edge_index[1,:]})
for head in range(attn.shape[1]):
gat_attn_df[f'attn_{head}'] = attn[:,head]
attn_dfs.append(gat_attn_df)
layer += 1
# Save scores
all_sims, all_genes, all_patient_ids, all_labels = [], [], [], []
for patient_id, sims, genes, g_mask in zip(batch_info["patient_ids"], phen_gene_sims, batch_info["cand_gene_names"], gene_mask):
nonpadded_sims = sims[g_mask].tolist()
all_sims.extend(nonpadded_sims)
all_genes.extend(genes)
all_patient_ids.extend([patient_id] * len(genes))
results_df = pd.DataFrame({'patient_id': all_patient_ids, 'genes': all_genes, 'similarities': all_sims})
# Save phenotype information
if attn_weights is None:
phen_df = None
else:
all_patient_ids, all_phens, all_attn_weights, all_degrees = [], [], [], []
for patient_id, attn_w, phen_names, p_mask in zip(batch_info["patient_ids"], attn_weights, batch_info["phenotype_names"], phenotype_mask):
p_names, degrees = zip(*phen_names)
all_patient_ids.extend([patient_id] * len(phen_names))
all_degrees.extend(degrees)
all_phens.extend(p_names)
all_attn_weights.extend(attn_w[p_mask].tolist())
phen_df = pd.DataFrame({'patient_id': all_patient_ids, 'phenotypes': all_phens, 'degrees': all_degrees, 'attention':all_attn_weights})
print(phen_df.head())
return results_df, phen_df, attn_dfs, phenotype_embeddings.cpu(), None
def test_step(self, batch, batch_idx):
node_embedder_loss, patient_loss, correct_gene_ranks, roc_score, ap_score, acc, f1, node_embeddings, gat_attn, phenotype_embedding, candidate_gene_embeddings, attn_weights, phen_gene_sims, raw_phen_gene_sims, gene_mask, phenotype_mask = self._step(batch, 'test')
return {'test/test_correct_gene_ranks': correct_gene_ranks,
'test/node.embed': node_embeddings.detach().cpu(),
'test/patient.phenotype_embed': phenotype_embedding.detach().cpu(),
'test/one_hot_labels': batch.one_hot_labels.detach().cpu(), #one_hot_labels_flattened.detach().cpu(),
'test/attention_weights': attn_weights.detach().cpu() if attn_weights != None else None,
'test/phen_gene_sims': phen_gene_sims.detach().cpu(),
'test/phenotype_names_degrees': batch.phenotype_names, # type = list
'test/gene_mask': gene_mask.detach().cpu(),
'test/phenotype_mask': phenotype_mask.detach().cpu(),
"test/patient_ids": batch.patient_ids, # type = list
"test/cand_gene_names": batch.cand_gene_names, # type = list
'test/gat_attn': gat_attn, # type = list
"test/n_id": batch.n_id[:batch.batch_size].detach().cpu(),
}
def inference(self, batch, batch_idx):
outputs, gat_attn = self.node_model.predict(self.all_data)
pad_outputs = torch.cat([torch.zeros(1, outputs.size(1), device=outputs.device), outputs])
t1 = time.time()
# get masks
phenotype_mask = (batch.batch_pheno_nid != 0)
gene_mask = (batch.batch_cand_gene_nid != 0)
# index into outputs using phenotype & gene batch node idx
batch_sz, max_n_phen = batch.batch_pheno_nid.shape
phenotype_embeddings = torch.index_select(pad_outputs, 0, batch.batch_pheno_nid.view(-1)).view(batch_sz, max_n_phen, -1)
batch_sz, max_n_cand_genes = batch.batch_cand_gene_nid.shape
cand_gene_embeddings = torch.index_select(pad_outputs, 0, batch.batch_cand_gene_nid.view(-1)).view(batch_sz, max_n_cand_genes, -1)
if self.hparams.hparams['augment_genes']:
print("Augmenting genes at inference...", self.hparams.hparams['aug_gene_w'])
_, max_n_sim_cand_genes, k_sim_genes = batch.batch_sim_gene_nid.shape
sim_gene_embeddings = torch.index_select(pad_outputs, 0, batch.batch_sim_gene_nid.view(-1)).view(batch_sz, max_n_sim_cand_genes, self.hparams.hparams['n_sim_genes'], -1)
agg_sim_gene_embedding = weighted_sum(sim_gene_embeddings, batch.batch_sim_gene_sims)
aug_gene_w = (self.hparams.hparams['aug_gene_w'] * (torch.sum(batch.batch_sim_gene_sims, dim = -1) > 0)).unsqueeze(-1)
cand_gene_embeddings = torch.mul(1 - aug_gene_w, cand_gene_embeddings) + torch.mul(aug_gene_w, agg_sim_gene_embedding)
# Patient Embedder with or without disease information
if self.hparams.hparams['use_diseases']:
disease_mask = (batch.batch_disease_nid != 0)
batch_sz, max_n_dx = batch.batch_disease_nid.shape
disease_embeddings = torch.index_select(pad_outputs, 0, batch.batch_disease_nid.view(-1)).view(batch_sz, max_n_dx, -1)
t2 = time.time()
phenotype_embedding, candidate_gene_embeddings, disease_embeddings, gene_mask, phenotype_mask, disease_mask, attn_weights = self.patient_model.forward(phenotype_embeddings, cand_gene_embeddings, disease_embeddings, phenotype_mask, gene_mask, disease_mask)
t3 = time.time()
else:
t2 = time.time()
phenotype_embedding, candidate_gene_embeddings, disease_embeddings, gene_mask, phenotype_mask, disease_mask, attn_weights = self.patient_model.forward(phenotype_embeddings, cand_gene_embeddings, phenotype_mask=phenotype_mask, gene_mask=gene_mask)
t3 = time.time()
if self.hparams.hparams['time']:
print(f'It takes {t1-t0:0.4f}s for the node model, {t2-t1:0.4f}s for indexing into the output, and {t3-t2:0.4f}s for the patient model forward.')
return outputs, gat_attn, phenotype_embedding, candidate_gene_embeddings, disease_embeddings, gene_mask, phenotype_mask, disease_mask, attn_weights
def predict_step(self, batch, batch_idx):
node_embeddings, gat_attn, phenotype_embedding, candidate_gene_embeddings, disease_embeddings, gene_mask, phenotype_mask, disease_mask, attn_weights = self.inference(batch, batch_idx)
# Calculate similarities between patient phenotypes & candidate genes/diseases
alpha = self.hparams.hparams['alpha']
use_candidate_list = True
disease_nid = batch.batch_disease_nid if self.hparams.hparams['use_diseases'] else None
# calculate similarity between phen & genes for all genes in manual candidate list
phen_gene_sims, raw_phen_gene_sims, phen_gene_mask, phen_gene_one_hot_labels = self.patient_model._calc_similarity(phenotype_embedding, candidate_gene_embeddings, None, batch.batch_cand_gene_nid, batch.batch_corr_gene_nid, disease_nid, batch.one_hot_labels, gene_mask, phenotype_mask, disease_mask, True, batch.batch_cand_gene_to_phenotypes_spl, alpha)
# Rank genes
correct_gene_ranks, phen_gene_sims = self.patient_model._rank_genes(phen_gene_sims, phen_gene_mask, phen_gene_one_hot_labels)
results_df, phen_df, attn_dfs, phenotype_embeddings, disease_embeddings = self.write_results_to_file(batch, phen_gene_sims, gene_mask, phenotype_mask, attn_weights, correct_gene_ranks, gat_attn, node_embeddings, phenotype_embedding, save=True)
return results_df, phen_df, *attn_dfs, phenotype_embeddings, disease_embeddings
def _epoch_end(self, outputs, loop_type):
correct_gene_ranks = torch.cat([x[f'{loop_type}/{loop_type}_correct_gene_ranks'] for x in outputs], dim=0)
if loop_type == "test":
batch_info = {"n_id": torch.cat([x[f'{loop_type}/n_id'] for x in outputs], dim=0),
"patient_ids": [pat for x in outputs for pat in x[f'{loop_type}/patient_ids']],
"phenotype_names": [pat for x in outputs for pat in x[f'{loop_type}/phenotype_names_degrees']],
"cand_gene_names": [pat for x in outputs for pat in x[f'{loop_type}/cand_gene_names']],
"one_hot_labels": [pat for x in outputs for pat in x[f'{loop_type}/one_hot_labels']],
}
phen_gene_sims = [pat for x in outputs for pat in x[f'{loop_type}/phen_gene_sims']]
gene_mask = [pat for x in outputs for pat in x[f'{loop_type}/gene_mask']]
phenotype_mask = [pat for x in outputs for pat in x[f'{loop_type}/phenotype_mask']]
attn_weights = [pat for x in outputs for pat in x[f'{loop_type}/attention_weights']]
gat_attn = [pat for x in outputs for pat in x[f'{loop_type}/gat_attn']]
node_embeddings = torch.cat([x[f'{loop_type}/node.embed'] for x in outputs], dim=0)
phenotype_embedding = torch.cat([x[f'{loop_type}/patient.phenotype_embed'] for x in outputs], dim=0)
results_df, phen_df, attn_dfs, phenotype_embeddings, disease_embeddings = self.write_results_to_file(batch_info, phen_gene_sims, gene_mask, phenotype_mask, attn_weights, correct_gene_ranks, gat_attn, node_embeddings, phenotype_embedding, loop_type=loop_type)
print("Writing results for test...")
output_base = "/home/ml499/public_repos/SHEPHERD/shepherd/results/gp"
results_df.to_csv(str(output_base) + '_scores.csv', index=False)
print(results_df)
phen_df.to_csv(str(output_base) + '_phenotype_attention.csv', sep = ',', index=False)
print(phen_df)
# Plot embeddings
if loop_type != "train" and len(self.train_patient_nodes) > 0 and self.hparams.hparams['plot_intrain']:
correct_gene_nid = torch.cat([x[f'{loop_type}/corr_gene_nid_orig'] for x in outputs], dim=0)
assert correct_gene_ranks.shape[0] == correct_gene_nid.shape[0]
# Rank of gene vs. number of train patients with causal gene
gene_rank_corr_gene_fig, gene_rank_corr_gene_counts = plot_gene_rank_vs_numtrain(correct_gene_ranks, correct_gene_nid, self.train_corr_gene_nid)
gene_rank_cand_gene_fig, gene_rank_cand_gene_counts = plot_gene_rank_vs_numtrain(correct_gene_ranks, correct_gene_nid, self.train_patient_nodes)
gene_rank_sparse_fig, gene_rank_sparse_counts = plot_gene_rank_vs_numtrain(correct_gene_ranks, correct_gene_nid, self.train_sparse_nodes)
gene_rank_target_fig, gene_rank_target_counts = plot_gene_rank_vs_numtrain(correct_gene_ranks, correct_gene_nid, self.train_target_batch)
self.logger.experiment.log({f'{loop_type}/gene_rank_vs_num_train_corr_genes': gene_rank_corr_gene_fig})
self.logger.experiment.log({f'{loop_type}/gene_rank_vs_num_train_cand_genes': gene_rank_cand_gene_fig})
self.logger.experiment.log({f'{loop_type}/gene_rank_vs_num_train_sparse': gene_rank_sparse_fig})
self.logger.experiment.log({f'{loop_type}/gene_rank_vs_num_train_target': gene_rank_target_fig})
gene_nid_trainset = torch.stack([torch.tensor(gene_rank_corr_gene_counts),
torch.tensor(gene_rank_cand_gene_counts),
torch.tensor(gene_rank_sparse_counts),
torch.tensor(gene_rank_target_counts)], dim=1)
self.logger.experiment.log({f'{loop_type}/gene_rank_vs_trainset': plot_gene_rank_vs_trainset(correct_gene_ranks, correct_gene_nid, gene_nid_trainset)})
if self.hparams.hparams['plot_PG_embed']:
self.logger.experiment.log({f'{loop_type}/patient_embed': fit_umap(patient_emb, patient_label)})
# plot % overlap with train patients
if loop_type != 'train' and self.hparams.hparams['mrr_vs_percent_overlap']:
max_percent_overlap_train = torch.cat([torch.tensor(x[f'val/max_percent_phen_overlap_train']) for x in outputs], dim=0)
self.logger.experiment.log({f'{loop_type}/mrr_vs_percent_overlap': mrr_vs_percent_overlap(correct_gene_ranks.detach().cpu(), max_percent_overlap_train.detach().cpu())})
if self.hparams.hparams['plot_frac_rank']:
# Rank of gene vs. fraction of phenotypes to disease
frac_p_with_direct_edge_to_dx = [pat[0][0] for x in outputs for pat in x[f'{loop_type}/frac_p_with_direct_edge_to_dx']] # NOTE: Currently ony select first disease.
self.logger.experiment.log({f'{loop_type}/gene_rank_vs_frac_p_with_direct_edge_to_dx': plot_gene_rank_vs_fraction_phenotype(correct_gene_ranks.cpu(), frac_p_with_direct_edge_to_dx)})
# Rank of gene vs. fraction of phenotypes to gene
frac_p_with_direct_edge_to_g = [pat[0][0] for x in outputs for pat in x[f'{loop_type}/frac_p_with_direct_edge_to_g']] # NOTE: Currently ony select first gene.
self.logger.experiment.log({f'{loop_type}/frac_p_with_direct_edge_to_g': plot_gene_rank_vs_fraction_phenotype(correct_gene_ranks.cpu(), frac_p_with_direct_edge_to_g)})
if self.hparams.hparams['plot_nhops_rank']:
# Rank of gene vs. hops from disease
nhops_g_d = [pat[0] for x in outputs for pat in x[f'{loop_type}/n_hops_g_d']] # NOTE Currently ony select first disease.
fig_mean, fig_min = plot_gene_rank_vs_hops(correct_gene_ranks.cpu(), nhops_g_d)
self.logger.experiment.log({f'{loop_type}/gene_rank_vs_mean_n_hops_g_d': fig_mean})
self.logger.experiment.log({f'{loop_type}/gene_rank_vs_min_n_hops_g_d': fig_min})
# Rank of gene vs. mean/min hops from phenotypes
nhops_g_p = [pat[0] for x in outputs for pat in x[f'{loop_type}/n_hops_g_p']] # NOTE Currently ony select first gene.
fig_mean, fig_min = plot_gene_rank_vs_hops(correct_gene_ranks.cpu(), nhops_g_p)
self.logger.experiment.log({f'{loop_type}/gene_rank_vs_mean_n_hops_g_p': fig_mean})
self.logger.experiment.log({f'{loop_type}/gene_rank_vs_min_n_hops_g_p': fig_min})
# # Rank of gene vs. distance between phenotypes
nhops_p_p = [torch.tensor(pat) for x in outputs for pat in x[f'{loop_type}/n_hops_p_p']]
fig_mean, fig_min = plot_gene_rank_vs_hops(correct_gene_ranks.cpu(), nhops_p_p)
self.logger.experiment.log({f'{loop_type}/gene_rank_vs_mean_n_hops_p_p': fig_mean})
self.logger.experiment.log({f'{loop_type}/gene_rank_vs_min_n_hops_p_p': fig_min})
if self.hparams.hparams['plot_attn_nhops']:
# plot phenotype attention vs n_hops to gene and degree
attn_weights = [torch.split(x[f'{loop_type}/attention_weights'],1) for x in outputs]
attn_weights = [w[w > 0] for batch_w in attn_weights for w in batch_w]
phenotype_names = [pat for x in outputs for pat in x[f'{loop_type}/phenotype_names_degrees']]
attn_weights_cpu_reshaped = torch.cat(attn_weights, dim=0)
self.logger.experiment.log({f"{loop_type}_attn/attention weights": wandb.Histogram(attn_weights_cpu_reshaped[attn_weights_cpu_reshaped != 0])})
self.logger.experiment.log({f"{loop_type}_attn/single patient attention weights": wandb.Histogram(attn_weights[0])})
self.logger.experiment.log({f"{loop_type}_attn/n hops to gene vs attention weights" : plot_nhops_to_gene_vs_attention(attn_weights, phenotype_names, nhops_g_p)})
self.logger.experiment.log({f"{loop_type}_attn/single patient n hops to gene vs attention weights" : plot_nhops_to_gene_vs_attention(attn_weights, phenotype_names, nhops_g_p, single_patient=True)})
self.logger.experiment.log({f"{loop_type}_attn/degree vs attention weights" : plot_degree_vs_attention(attn_weights, phenotype_names)})
self.logger.experiment.log({f"{loop_type}_attn/single patient degree vs attention weights" : plot_degree_vs_attention(attn_weights, phenotype_names, single_patient=True)})
data = [[p_name[0], w.item(), p_name[1], n_hops_to_g] for w, p_name, n_hops_to_g in zip(attn_weights[0], phenotype_names[0], nhops_g_p[0])]
self.logger.experiment.log({f"{loop_type}_attn/phenotypes": wandb.Table(data=data, columns=["HPO Code", "Attention Weight", "Degree", "Num Hops to Gene" ])})
if self.hparams.hparams['plot_phen_gene_sims']:
all_phen_gene_sims, all_raw_phen_gene_sims, all_pg_spl, all_correct_sims, all_incorrect_sims = [], [], [], [], []
for x in outputs:
phen_gene_sims = x[f'{loop_type}/phen_gene_sims']
one_hot_labels = x[f'{loop_type}/one_hot_labels']
correct_phen_squeuegene_sims = all_correct_sims.append(phen_gene_sims[one_hot_labels == 1])
incorrect_phen_gene_sims = all_incorrect_sims.append(phen_gene_sims[one_hot_labels != 1])
phen_gene_sims_reshaped = all_phen_gene_sims.append(phen_gene_sims.view(-1))
phen_gene_sims_reshaped = torch.cat(all_phen_gene_sims)
correct_phen_gene_sims = torch.cat(all_correct_sims)
incorrect_phen_gene_sims = torch.cat(all_incorrect_sims)
if len(all_pg_spl) > 0: pg_spl_reshaped = torch.cat(all_pg_spl)
else: pg_spl_reshaped = []
self.logger.experiment.log({f"{loop_type}_pg_similarities/phenotype-gene similarities": wandb.Histogram(phen_gene_sims_reshaped[phen_gene_sims_reshaped != -100000])})
self.logger.experiment.log({f"{loop_type}_pg_similarities/phenotype-correct gene similarities": wandb.Histogram(correct_phen_gene_sims[correct_phen_gene_sims != -100000])})
self.logger.experiment.log({f"{loop_type}_pg_similarities/phenotype-incorrect gene similarities": wandb.Histogram(incorrect_phen_gene_sims[incorrect_phen_gene_sims != -100000])})
if len(pg_spl_reshaped) > 0: self.logger.experiment.log({f"{loop_type}_pg_similarities/pg spl": wandb.Histogram(pg_spl_reshaped[pg_spl_reshaped != 0])})
phen_gene_sims_patient = outputs[0][f'{loop_type}/phen_gene_sims'][0,:]
one_hot_labels_patient = outputs[0][f'{loop_type}/one_hot_labels'][0,:]
correct_phen_gene_sims_patient = phen_gene_sims_patient[one_hot_labels_patient == 1]
assert len(correct_phen_gene_sims_patient) == 1
incorrect_phen_gene_sims_patient = phen_gene_sims_patient[one_hot_labels_patient != 1]
self.logger.experiment.log({f"{loop_type}_pg_similarities/single patient phenotype-gene similarities": wandb.Histogram(phen_gene_sims_patient[phen_gene_sims_patient != -100000])})
self.logger.experiment.log({f"{loop_type}_pg_similarities/single patient phenotype-correct gene similarities": wandb.Histogram(correct_phen_gene_sims_patient[correct_phen_gene_sims_patient != -100000])})
self.logger.experiment.log({f"{loop_type}_pg_similarities/single patient phenotype-incorrect gene similarities": wandb.Histogram(incorrect_phen_gene_sims_patient[incorrect_phen_gene_sims_patient != -100000])})
if len(pg_spl_reshaped) > 0: self.logger.experiment.log({f"{loop_type}_pg_similarities/single patient pg spl": wandb.Histogram(pg_spl_reshaped[pg_spl_reshaped != 0])})
# top k accuracy
top_1_acc = top_k_acc(correct_gene_ranks, k=1)
top_3_acc = top_k_acc(correct_gene_ranks, k=3)
top_5_acc = top_k_acc(correct_gene_ranks, k=5)
top_10_acc = top_k_acc(correct_gene_ranks, k=10)
#mean reciprocal rank
mrr = mean_reciprocal_rank(correct_gene_ranks)
avg_rank = average_rank(correct_gene_ranks)
self.log(f'{loop_type}/gp_{loop_type}_epoch_top1_acc', top_1_acc, prog_bar=False)
self.log(f'{loop_type}/gp_{loop_type}_epoch_top3_acc', top_3_acc, prog_bar=False)
self.log(f'{loop_type}/gp_{loop_type}_epoch_top5_acc', top_5_acc, prog_bar=False)
self.log(f'{loop_type}/gp_{loop_type}_epoch_top10_acc', top_10_acc, prog_bar=False)
self.log(f'{loop_type}/gp_{loop_type}_epoch_mrr', mrr, prog_bar=False)
self.log(f'{loop_type}/gp_{loop_type}_epoch_avg_rank', avg_rank, prog_bar=False)
if loop_type == 'val':
self.log(f'curr_epoch', self.current_epoch, prog_bar=False)
def training_epoch_end(self, outputs):
if self.hparams.hparams['plot_intrain']:
all_train_nodes, counts = torch.unique(torch.cat([x['train/n_id'] for x in outputs], dim=0), return_counts=True)
curr_all_train_nodes = {n.item(): c.item() if n not in self.all_train_nodes else c.item() + self.all_train_nodes[n].item() for n, c in zip(all_train_nodes, counts)}
self.all_train_nodes.update(curr_all_train_nodes)
train_sparse_nodes, counts = torch.unique(torch.cat([x['train/sparse_idx'] for x in outputs], dim=0), return_counts=True)
curr_train_sparse_nodes = {n.item(): c.item() if n not in self.train_sparse_nodes else c.item() + self.train_sparse_nodes[n].item() for n, c in zip(train_sparse_nodes, counts)}
self.train_sparse_nodes.update(curr_train_sparse_nodes)
train_target_batch, counts = torch.unique(torch.cat([x['train/target_batch'] for x in outputs], dim=0), return_counts=True)
curr_train_target_batch = {n.item(): c.item() if n not in self.train_target_batch else c.item() + self.train_target_batch[n].item() for n, c in zip(train_target_batch, counts)}
self.train_target_batch.update(curr_train_target_batch)
train_patient_nodes, counts = torch.unique(torch.cat([x['train/cand_gene_nid_orig'] for x in outputs], dim=0), return_counts=True)
self.train_patient_nodes = {n.item(): c.item() for n, c in zip(train_patient_nodes, counts)}
train_corr_gene_nids, counts = torch.unique(torch.cat([x['train/corr_gene_nid_orig'] for x in outputs], dim=0), return_counts=True)
self.train_corr_gene_nid = {g.item(): c.item() for g, c in zip(train_corr_gene_nids, counts)}
self._epoch_end(outputs, 'train')
def validation_epoch_end(self, outputs):
self._epoch_end(outputs, 'val')
def test_epoch_end(self, outputs):
self._epoch_end(outputs, 'test')
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.hparams['lr'])
return optimizer