# General
import numpy as np
import random
import argparse
import os
import sys
from pathlib import Path
from datetime import datetime
from collections import Counter
import pandas as pd
import pickle
import time
sys.path.insert(0, '..') # add project_config to path
# Pytorch
import torch
import torch.nn as nn
from torch_geometric.utils.convert import to_networkx, to_scipy_sparse_matrix
from torch_geometric.data import Data, DataLoader, NeighborSampler
from torch_geometric.utils import negative_sampling
import torch.nn.functional as F
from torch.utils.data import DataLoader, random_split, SubsetRandomSampler
# Pytorch lightning
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import ModelCheckpoint
# W&B
import wandb
# multiprocessing
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
# Own code
import project_config
from shepherd.dataset import PatientDataset
from shepherd.gene_prioritization_model import CombinedGPAligner
from shepherd.patient_nca_model import CombinedPatientNCA
from shepherd.samplers import PatientNeighborSampler
import preprocess
from hparams import get_pretrain_hparams, get_train_hparams
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
import faulthandler; faulthandler.enable()
def parse_args():
parser = argparse.ArgumentParser(description="Learning node embeddings.")
# Input files/parameters
parser.add_argument("--edgelist", type=str, default=None, help="File with edge list")
parser.add_argument("--node_map", type=str, default=None, help="File with node list")
parser.add_argument('--saved_node_embeddings_path', type=str, default=None, help='Path within kg_embeddings folder to the saved KG embeddings')
parser.add_argument('--patient_data', default="disease_simulated", type=str)
parser.add_argument('--run_type', choices=["causal_gene_discovery", "disease_characterization", "patients_like_me"], type=str)
parser.add_argument("--aug_sim", type=str, default=None, help="File with the similarity dictionary")
parser.add_argument("--aug_gene_by_deg", type=bool, default=False, help="Augment gene by degree")
parser.add_argument("--aug_gene_w", type=float, default=0.7, help="Contribution of augmentation (gene)")
parser.add_argument("--n_sim_genes", type=int, default=3, help="K similar genes for augmentation")
parser.add_argument("--n_transformer_layers", type=int, default=3, help="Number of transformer layers")
parser.add_argument("--n_transformer_heads", type=int, default=8, help="Number of transformer heads")
# Tunable parameters
parser.add_argument('--sparse_sample', default=200, type=int)
parser.add_argument('--lr', default=0.0001, type=float)
parser.add_argument('--upsample_cand', default=1, type=int)
parser.add_argument('--neighbor_sampler_size', default=-1, type=int)
parser.add_argument('--lmbda', type=float, default=0.5, help='Lambda')
parser.add_argument('--alpha', type=float, default=0, help='Alpha')
parser.add_argument('--kappa', type=float, default=0.3, help='Kappa (Only used for combined model with link prediction loss)')
parser.add_argument('--seed', default=33, type=int)
parser.add_argument('--batch_size', default=64, type=int)
# Resume / run inference with best checkpoint
parser.add_argument('--resume', default="", type=str)
parser.add_argument('--do_inference', action='store_true')
parser.add_argument('--best_ckpt', type=str, default=None, help='Name of the best performing checkpoint')
parser.add_argument('--use_wandb', type=bool, default=True)
args = parser.parse_args()
return args
def load_patient_datasets(hparams, inference=False):
print('loading patient datasets')
if inference:
train_dataset = None
val_dataset = None
else:
train_dataset = PatientDataset(project_config.PROJECT_DIR / 'patients' / hparams['train_data'], time=hparams['time'])
val_dataset = PatientDataset(project_config.PROJECT_DIR / 'patients' / hparams['validation_data'], time=hparams['time'])
if inference:
test_dataset = PatientDataset(project_config.PROJECT_DIR / 'patients' / hparams['test_data'], time=hparams['time'])
else:
test_dataset = None
print('finished loading patient datasets')
return train_dataset, val_dataset, test_dataset
def get_dataloaders(hparams, all_data, nid_to_spl_dict, n_nodes, gene_phen_dis_node_idx, train_dataset, val_dataset, test_dataset, inference=False):
print('Get dataloaders', flush=True)
shuffle = False if hparams['debug'] or inference else True
if not hparams['sample_from_gpd']: gene_phen_dis_node_idx = None
batch_sz = hparams['inference_batch_size'] if inference else hparams['batch_size']
sparse_sample = 1 if inference else hparams['sparse_sample']
#get phenotypes & genes found in train patients
if hparams['sample_edges_from_train_patients']:
phenotype_counter = Counter()
gene_counter = Counter()
for patient in train_dataset:
phenotype_node_idx, candidate_gene_node_idx, correct_genes_node_idx, disease_node_idx, labels, additional_labels, patient_ids = patient
phenotype_counter += Counter(list(phenotype_node_idx.numpy()))
gene_counter += Counter(list(candidate_gene_node_idx.numpy()))
else:
phenotype_counter=None
gene_counter=None
print('Loading SPL...')
if hparams['spl'] is not None:
spl = np.load(project_config.PROJECT_DIR / 'patients' / hparams['spl'])
else: spl = None
if hparams['spl_index'] is not None and (project_config.PROJECT_DIR / 'patients' / hparams['spl_index']).exists():
with open(str(project_config.PROJECT_DIR / 'patients' / hparams['spl_index']), "rb") as input_file:
spl_indexing_dict = pickle.load(input_file)
else: spl_indexing_dict=None # TODO: short term fix for simulated patients, get rid once we create this dict
print('Loaded SPL information')
if args.aug_sim is not None:
with open(str(project_config.PROJECT_DIR / 'knowledge_graph/8.9.21_kg' / ('top_10_similar_genes_sim=%s.pkl' % args.aug_sim)), "rb") as input_file:
gene_similarity_dict = pickle.load(input_file)
print("Using augment gene similarity: %s" % args.aug_sim)
else: gene_similarity_dict=None
with open("/home/ema30/zaklab/rare_disease_dx/formatted_patients/degree_dict_8.9.21_kg.pkl", "rb") as input_file:
gene_deg_dict = pickle.load(input_file)
if inference:
train_dataloader = None
val_dataloader = None
else:
print('setting up train dataloader')
train_dataloader = PatientNeighborSampler('train', all_data.edge_index[:,all_data.train_mask], all_data.edge_index[:,all_data.train_mask],
sizes = hparams['neighbor_sampler_sizes'], patient_dataset=train_dataset, batch_size = batch_sz,
sparse_sample = sparse_sample, do_filter_edges=hparams['filter_edges'],
all_edge_attributes=all_data.edge_attr, n_nodes = n_nodes, relevant_node_idx=gene_phen_dis_node_idx,
shuffle = shuffle, train_phenotype_counter=phenotype_counter, train_gene_counter=gene_counter, sample_edges_from_train_patients=hparams['sample_edges_from_train_patients'], num_workers=hparams['num_workers'],
upsample_cand=hparams['upsample_cand'], n_cand_diseases=hparams['n_cand_diseases'], use_diseases=hparams['use_diseases'], nid_to_spl_dict=nid_to_spl_dict, gp_spl=spl, spl_indexing_dict=spl_indexing_dict,
hparams=hparams, pin_memory=hparams['pin_memory'],
gene_similarity_dict = gene_similarity_dict,
gene_deg_dict = gene_deg_dict)
print('finished setting up train dataloader')
print('setting up val dataloader')
val_dataloader = PatientNeighborSampler('val', all_data.edge_index, all_data.edge_index[:,all_data.val_mask],
sizes = [-1,10,5],
patient_dataset=val_dataset, batch_size = batch_sz,
sparse_sample = sparse_sample, all_edge_attributes=all_data.edge_attr, n_nodes = n_nodes,
relevant_node_idx=gene_phen_dis_node_idx,
shuffle = False, train_phenotype_counter=phenotype_counter, train_gene_counter=gene_counter, sample_edges_from_train_patients=hparams['sample_edges_from_train_patients'], num_workers=hparams['num_workers'],
n_cand_diseases=hparams['n_cand_diseases'], use_diseases=hparams['use_diseases'], nid_to_spl_dict=nid_to_spl_dict, gp_spl=spl, spl_indexing_dict=spl_indexing_dict,
hparams=hparams, pin_memory=hparams['pin_memory'],
gene_similarity_dict = gene_similarity_dict,
gene_deg_dict = gene_deg_dict)
print('finished setting up val dataloader')
print('setting up test dataloader')
if inference:
sizes = [-1,10,5]
print('SIZES: ', sizes)
test_dataloader = PatientNeighborSampler('test', all_data.edge_index, all_data.edge_index[:,all_data.test_mask],
sizes = sizes, patient_dataset=test_dataset, batch_size = len(test_dataset),
sparse_sample = sparse_sample, all_edge_attributes=all_data.edge_attr, n_nodes = n_nodes, relevant_node_idx=gene_phen_dis_node_idx,
shuffle = False, num_workers=hparams['num_workers'],
n_cand_diseases=hparams['test_n_cand_diseases'], use_diseases=hparams['use_diseases'], nid_to_spl_dict=nid_to_spl_dict, gp_spl=spl, spl_indexing_dict=spl_indexing_dict,
hparams=hparams, pin_memory=hparams['pin_memory'],
gene_similarity_dict = gene_similarity_dict,
gene_deg_dict = gene_deg_dict)
else: test_dataloader = None
print('finished setting up test dataloader')
return train_dataloader, val_dataloader, test_dataloader
def get_model(args, hparams, node_hparams, all_data, edge_attr_dict, n_nodes, load_from_checkpoint=False):
print("setting up model", hparams['model_type'])
# get patient model
if hparams['model_type'] == 'aligner':
if load_from_checkpoint:
comb_patient_model = CombinedGPAligner.load_from_checkpoint(checkpoint_path=str(Path(project_config.PROJECT_DIR / args.best_ckpt)),
edge_attr_dict=edge_attr_dict, all_data=all_data, n_nodes=n_nodes, node_ckpt = hparams["saved_checkpoint_path"], node_hparams=node_hparams)
else:
comb_patient_model = CombinedGPAligner(edge_attr_dict=edge_attr_dict, all_data=all_data, n_nodes=n_nodes, hparams=hparams, node_ckpt = hparams["saved_checkpoint_path"], node_hparams=node_hparams)
elif hparams['model_type'] == 'patient_NCA':
if load_from_checkpoint:
comb_patient_model = CombinedPatientNCA.load_from_checkpoint(checkpoint_path=str(Path(project_config.PROJECT_DIR) / args.best_ckpt),
all_data=all_data, edge_attr_dict=edge_attr_dict, n_nodes=n_nodes, node_ckpt=hparams["saved_checkpoint_path"])
else:
comb_patient_model = CombinedPatientNCA(edge_attr_dict=edge_attr_dict, all_data=all_data, n_nodes=n_nodes, node_ckpt=hparams["saved_checkpoint_path"], hparams=hparams)
else:
raise NotImplementedError
print('finished setting up model')
return comb_patient_model
def train(args, hparams):
print('Training Model', flush=True)
# Hyperparameters
node_hparams = get_pretrain_hparams(args, combined=True)
print('Edge List: ', args.edgelist, flush=True)
print('Node Map: ', args.node_map, flush=True)
# Set seed
pl.seed_everything(hparams['seed'])
# Read input data
print('Read data', flush=True)
all_data, edge_attr_dict, nodes = preprocess.preprocess_graph(args)
n_nodes = len(nodes["node_idx"].unique())
print(f'Number of nodes: {n_nodes}')
gene_phen_dis_node_idx = torch.LongTensor(nodes.loc[nodes['node_type'].isin(['gene/protein', 'effect/phenotype', 'disease']), 'node_idx'].values)
if args.resume != "":
print('Resuming Run')
# create Weights & Biases Logger
if ":" in args.resume: # colons are not allowed in ID/resume name
resume_id = "_".join(args.resume.split(":"))
run_name = args.resume
wandb_logger = WandbLogger(run_name, project=hparams['wandb_project_name'], entity='rare_disease_dx', save_dir=hparams['wandb_save_dir'], id=resume_id, resume=resume_id)
#add run name to hparams dict
hparams['run_name'] = run_name
# get patient model
comb_patient_model = get_model(args, hparams, node_hparams, all_data, edge_attr_dict, n_nodes, load_from_checkpoint=True)
else:
print('Creating new W&B Logger')
# create Weights & Biases Logger
curr_time = datetime.now().strftime("%m_%d_%y:%H:%M:%S")
lr = hparams['lr']
val_data = str(hparams['validation_data']).split('.txt')[0].replace('/', '.')
run_name = "{}_val_{}".format(curr_time, val_data).replace('patients', 'pats')
run_name = run_name + f'_seed={args.seed}'
run_name = run_name.replace('5_candidates_mapped_only', '5cand_map').replace('8.9.21_kgsolved_manual_baylor_nobgm_distractor_genes', 'manual').replace('patient_disease_NCA', 'pd_NCA').replace('_distractor', '')
wandb_logger = WandbLogger(name=run_name, project=hparams['wandb_project_name'], entity='rare_disease_dx', save_dir=hparams['wandb_save_dir'],
id="_".join(run_name.split(":")), resume="allow")
#add run name to hparams dict
print('Run name', run_name)
hparams['run_name'] = run_name
# get patient model
comb_patient_model = get_model(args, hparams, node_hparams, all_data, edge_attr_dict, n_nodes, load_from_checkpoint=False)
# get model & dataloaders
nid_to_spl_dict = {nid: idx for idx, nid in enumerate(nodes[nodes["node_type"] == "gene/protein"]["node_idx"].tolist())}
train_dataset, val_dataset, test_dataset = load_patient_datasets(hparams)
patient_train_dataloader, patient_val_dataloader, patient_test_dataloader = get_dataloaders(hparams, all_data, nid_to_spl_dict,
n_nodes, gene_phen_dis_node_idx,
train_dataset, val_dataset, test_dataset)
# callbacks
print('Init callbacks')
checkpoint_path = (project_config.PROJECT_DIR / 'checkpoints' / hparams['model_type'] / run_name)
hparams['checkpoint_path'] = checkpoint_path
print('Checkpoint path: ', checkpoint_path)
if not os.path.exists(project_config.PROJECT_DIR / 'checkpoints' / hparams['model_type']): (project_config.PROJECT_DIR / 'checkpoints' / hparams['model_type']).mkdir()
if not os.path.exists(checkpoint_path): checkpoint_path.mkdir()
monitor_type = 'val/mrr' if args.run_type == 'disease_characterization' or args.run_type == 'patients_like_me' else 'val/gp_val_epoch_mrr'
fname = 'epoch={epoch:02d}-val_mrr={val/mrr:.2f}' if args.run_type == 'disease_characterization' or args.run_type == 'patients_like_me' else 'epoch={epoch:02d}-val_mrr={val/gp_val_epoch_mrr:.2f}'
patient_checkpoint_callback = ModelCheckpoint(
monitor=monitor_type,
dirpath=checkpoint_path,
filename=fname,
save_top_k=-1,
mode='max',
auto_insert_metric_name = False
)
# log gradients with logger
print('wandb logger watch')
wandb_logger.watch(comb_patient_model, log='all')
#initialize trainer
if hparams['debug']:
limit_train_batches = 1
limit_val_batches = 1
hparams['max_epochs'] = 6
else:
limit_train_batches=1.0
limit_val_batches=1.0
print('initialize trainer')
patient_trainer = pl.Trainer(gpus=hparams['n_gpus'],
logger=wandb_logger,
max_epochs=hparams['max_epochs'],
callbacks=[patient_checkpoint_callback],
profiler=hparams['profiler'],
log_gpu_memory=hparams['log_gpu_memory'],
limit_train_batches=limit_train_batches,
limit_val_batches=limit_val_batches,
weights_summary="full",
gradient_clip_val=hparams['gradclip'])
# Train
patient_trainer.fit(comb_patient_model, patient_train_dataloader, patient_val_dataloader)
@torch.no_grad()
def inference(args, hparams):
print('Running inference')
# Hyperparameters
node_hparams = get_pretrain_hparams(args, combined=True)
hparams.update({'add_similar_patients': False})
# Seed
pl.seed_everything(hparams['seed'])
# Read data
all_data, edge_attr_dict, nodes = preprocess.preprocess_graph(args)
n_nodes = len(nodes["node_idx"].unique())
gene_phen_dis_node_idx = torch.LongTensor(nodes.loc[nodes['node_type'].isin(['gene/protein', 'effect/phenotype', 'disease']), 'node_idx'].values)
# Get logger & trainer
curr_time = datetime.now().strftime("%m_%d_%y:%H:%M:%S")
lr = hparams['lr']
test_data = hparams['test_data'].split('.txt')[0].replace('/', '.')
run_name = "{}_lr_{}_test_{}".format(curr_time, lr, test_data)
wandb_logger = WandbLogger(run_name, project=hparams['wandb_project_name'], entity='rare_disease_dx', save_dir=hparams['wandb_save_dir'])
print('Run name: ', run_name)
hparams['run_name'] = run_name
# Get datasets
train_dataset, val_dataset, test_dataset = load_patient_datasets(hparams, inference=True)
# Get dataloader
nid_to_spl_dict = {nid: idx for idx, nid in enumerate(nodes[nodes["node_type"] == "gene/protein"]["node_idx"].tolist())}
_, _, test_dataloader = get_dataloaders(hparams, all_data, nid_to_spl_dict,
n_nodes, gene_phen_dis_node_idx,
train_dataset, val_dataset, test_dataset, inference=True)
# Get patient model
model = get_model(args, hparams, node_hparams, all_data, edge_attr_dict, n_nodes, load_from_checkpoint=True)
trainer = pl.Trainer(gpus=0, logger=wandb_logger)
results = trainer.test(model, dataloaders=test_dataloader)
print(results)
print('---- RESULTS ----')
if __name__ == "__main__":
# Get hyperparameters
args = parse_args()
hparams = get_train_hparams(args)
# Run model
if args.do_inference:
inference(args, hparams)
else:
train(args, hparams)