[db6163]: / shepherd / samplers.py

Download this file

691 lines (585 with data), 38.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch_sparse import SparseTensor
from torch_cluster import random_walk
from torch_geometric.data.sampler import EdgeIndex, Adj
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import Dataset
from torch_geometric.utils import add_self_loops, add_remaining_self_loops
from torch_geometric.data import Data, DataLoader, NeighborSampler
from typing import List, Optional, Tuple, NamedTuple, Union, Callable, Dict
from collections import defaultdict
import time
import random
import pickle
from collections import Counter
from operator import itemgetter
import copy
import numpy as np
from utils.pretrain_utils import get_indices_into_edge_index, HeterogeneousEdgeIndex
from sklearn.preprocessing import label_binarize
import project_config
class NeighborSampler(torch.utils.data.DataLoader):
r"""The neighbor sampler from the `"Inductive Representation Learning on
Large Graphs" <https://arxiv.org/abs/1706.02216>`_ paper, which allows
for mini-batch training of GNNs on large-scale graphs where full-batch
training is not feasible.
Given a GNN with :math:`L` layers and a specific mini-batch of nodes
:obj:`node_idx` for which we want to compute embeddings, this module
iteratively samples neighbors and constructs bipartite graphs that simulate
the actual computation flow of GNNs.
More specifically, :obj:`sizes` denotes how much neighbors we want to
sample for each node in each layer.
This module then takes in these :obj:`sizes` and iteratively samples
:obj:`sizes[l]` for each node involved in layer :obj:`l`.
In the next layer, sampling is repeated for the union of nodes that were
already encountered.
The actual computation graphs are then returned in reverse-mode, meaning
that we pass messages from a larger set of nodes to a smaller one, until we
reach the nodes for which we originally wanted to compute embeddings.
Hence, an item returned by :class:`NeighborSampler` holds the current
:obj:`batch_size`, the IDs :obj:`n_id` of all nodes involved in the
computation, and a list of bipartite graph objects via the tuple
:obj:`(edge_index, e_id, size)`, where :obj:`edge_index` represents the
bipartite edges between source and target nodes, :obj:`e_id` denotes the
IDs of original edges in the full graph, and :obj:`size` holds the shape
of the bipartite graph.
For each bipartite graph, target nodes are also included at the beginning
of the list of source nodes so that one can easily apply skip-connections
or add self-loops.
.. note::
For an example of using :obj:`NeighborSampler`, see
`examples/reddit.py
<https://github.com/rusty1s/pytorch_geometric/blob/master/examples/
reddit.py>`_ or
`examples/ogbn_products_sage.py
<https://github.com/rusty1s/pytorch_geometric/blob/master/examples/
ogbn_products_sage.py>`_.
Args:
edge_index (Tensor or SparseTensor): A :obj:`torch.LongTensor` or a
:obj:`torch_sparse.SparseTensor` that defines the underlying graph
connectivity/message passing flow.
:obj:`edge_index` holds the indices of a (sparse) symmetric
adjacency matrix.
If :obj:`edge_index` is of type :obj:`torch.LongTensor`, its shape
must be defined as :obj:`[2, num_edges]`, where messages from nodes
:obj:`edge_index[0]` are sent to nodes in :obj:`edge_index[1]`
(in case :obj:`flow="source_to_target"`).
If :obj:`edge_index` is of type :obj:`torch_sparse.SparseTensor`,
its sparse indices :obj:`(row, col)` should relate to
:obj:`row = edge_index[1]` and :obj:`col = edge_index[0]`.
The major difference between both formats is that we need to input
the *transposed* sparse adjacency matrix.
sizes ([int]): The number of neighbors to sample for each node in each
layer. If set to :obj:`sizes[l] = -1`, all neighbors are included
in layer :obj:`l`.
node_idx (LongTensor, optional): The nodes that should be considered
for creating mini-batches. If set to :obj:`None`, all nodes will be
considered.
num_nodes (int, optional): The number of nodes in the graph.
(default: :obj:`None`)
return_e_id (bool, optional): If set to :obj:`False`, will not return
original edge indices of sampled edges. This is only useful in case
when operating on graphs without edge features to save memory.
(default: :obj:`True`)
transform (callable, optional): A function/transform that takes in
an a sampled mini-batch and returns a transformed version.
(default: :obj:`None`)
**kwargs (optional): Additional arguments of
:class:`torch.utils.data.DataLoader`, such as :obj:`batch_size`,
:obj:`shuffle`, :obj:`drop_last` or :obj:`num_workers`.
"""
def __init__(self, dataset_type: str, edge_index: Union[Tensor, SparseTensor],
sample_edge_index: Union[Tensor, SparseTensor],
sizes: List[int],
node_idx: Optional[Tensor] = None,
num_nodes: Optional[int] = None, return_e_id: bool = True,
transform: Callable = None,
do_filter_edges: bool = True,
**kwargs):
edge_index = edge_index.to('cpu')
sample_edge_index = sample_edge_index.to('cpu')
# add self loops
sample_edge_index, _ = add_self_loops(sample_edge_index)
if 'collate_fn' in kwargs:
del kwargs['collate_fn']
# Save for Pytorch Lightning...
self.dataset_type = dataset_type
self.edge_index = edge_index #always train edge index
self.sample_edge_index = sample_edge_index # depends on train/val/test
self.node_idx = node_idx
self.num_nodes = num_nodes
self.sizes = sizes
self.return_e_id = return_e_id
self.transform = transform
self.is_sparse_tensor = isinstance(edge_index, SparseTensor)
self.__val__ = None
self.do_filter_edges = do_filter_edges
# Obtain a *transposed* `SparseTensor` instance.
if not self.is_sparse_tensor:
if (num_nodes is None and node_idx is not None
and node_idx.dtype == torch.bool):
num_nodes = node_idx.size(0)
sample_num_nodes = num_nodes
if (num_nodes is None and node_idx is not None
and node_idx.dtype == torch.long):
num_nodes = max(int(edge_index.max()), int(node_idx.max())) + 1
sample_num_nodes = num_nodes
if num_nodes is None:
num_nodes = int(edge_index.max()) + 1
sample_num_nodes = int(sample_edge_index.max()) + 1
value = torch.arange(edge_index.size(1)) if return_e_id else None
sample_value = torch.arange(sample_edge_index.size(1)) if return_e_id else None
self.adj_t = SparseTensor(row=edge_index[0], col=edge_index[1],
value=value,
sparse_sizes=(num_nodes, num_nodes)).t()
self.adj_t_sample = SparseTensor(row=sample_edge_index[0], col=sample_edge_index[1],
value=sample_value,
sparse_sizes=(sample_num_nodes, sample_num_nodes)).t()
else:
adj_t = edge_index
adj_t_sample = sample_edge_index
if return_e_id:
self.__val__ = adj_t.storage.value()
value = torch.arange(adj_t.nnz())
adj_t = adj_t.set_value(value, layout='coo')
adj_t_sample = adj_t_sample.set_value(torch.arange(adj_t_sample.nnz()), layout='coo')
self.adj_t = adj_t
self.adj_t_sample = adj_t_sample
self.adj_t.storage.rowptr()
self.adj_t_sample.storage.rowptr()
if node_idx is None:
node_idx = torch.arange(self.adj_t_sample.sparse_size(0))
elif node_idx.dtype == torch.bool:
node_idx = node_idx.nonzero(as_tuple=False).view(-1)
super(NeighborSampler, self).__init__(
node_idx.view(-1).tolist(), collate_fn=self.sample, **kwargs)
def filter_edges(self, edge_index, e_id, source_nodes, target_nodes):
'''
Filter out the edges we're trying to predict in the current batch from the edge index
NOTE: edge_index here is re-indexed
'''
reindex_source_nodes = torch.arange(source_nodes.size(0))
reindex_target_nodes = torch.arange(start = source_nodes.size(0), end = source_nodes.size(0) + target_nodes.size(0))
# get reverse edges to filter as well
all_source_nodes = torch.cat([reindex_source_nodes, reindex_target_nodes])
all_target_nodes = torch.cat([reindex_target_nodes, reindex_source_nodes])
ind_to_edge_index, ind_to_nodes = get_indices_into_edge_index(edge_index, all_source_nodes, all_target_nodes) #get index into the original edge index (this returns e_ids)
mask = torch.ones(edge_index.size(1), dtype=torch.bool)
mask[ind_to_edge_index] = False
return edge_index[:, mask], e_id[mask]
def sample(self, source_batch):
#convert to tensor
if not isinstance(source_batch, Tensor):
source_batch = torch.tensor(source_batch)
# sample nodes to form positive edges. we will try to predict these edges
row, col, e_id = self.adj_t_sample.coo()
target_batch = random_walk(row, col, source_batch, walk_length=1, coalesced=False)[:, 1] #NOTE: only does self loops when no edges in the current partition of the dataset
batch = torch.cat([source_batch, target_batch], dim=0)
batch_size: int = len(batch)
adjs = []
n_id = batch
for size in self.sizes:
adj_t, n_id = self.adj_t.sample_adj(n_id, size, replace=False)
e_id = adj_t.storage.value()
size = adj_t.sparse_sizes()[::-1]
if self.__val__ is not None:
adj_t.set_value_(self.__val__[e_id], layout='coo')
if self.is_sparse_tensor: #TODO: implement filter_edges if sparse tensor
adjs.append(Adj(adj_t, e_id, size))
else:
row, col, _ = adj_t.coo()
edge_index = torch.stack([col, row], dim=0)
if self.do_filter_edges and self.dataset_type == 'train':
edge_index, e_id = self.filter_edges(edge_index, e_id, source_batch, target_batch)
adjs.append(EdgeIndex(edge_index, e_id, size))
adjs = adjs[0] if len(adjs) == 1 else adjs[::-1]
out = (batch_size, n_id, adjs)
out = self.transform(*out) if self.transform is not None else out
return out
def __repr__(self):
return '{}(sizes={})'.format(self.__class__.__name__, self.sizes)
class PatientNeighborSampler(torch.utils.data.DataLoader):
def __init__(self, dataset_type: str, edge_index: Union[Tensor, SparseTensor],
sample_edge_index: Union[Tensor, SparseTensor],
sizes: List[int],
patient_dataset,
all_edge_attributes,
n_nodes: int,
relevant_node_idx = None,
do_filter_edges: Optional[bool] = False,
num_nodes: Optional[int] = None,
return_e_id: bool = True,
sparse_sample: Optional[int] = 0,
train_phenotype_counter: Dict = None,
train_gene_counter: Dict = None,
sample_edges_from_train_patients=False,
upsample_cand: Optional[int] = 0,
n_cand_diseases=-1,
use_diseases=False,
nid_to_spl_dict = None,
gp_spl = None,
spl_indexing_dict=None,
gene_similarity_dict=None,
gene_deg_dict = None,
hparams=None,
transform: Callable = None,
**kwargs):
edge_index = edge_index.to('cpu')
sample_edge_index = sample_edge_index.to('cpu')
# add self loops
sample_edge_index = torch.cat((sample_edge_index, torch.stack([edge_index.unique(), edge_index.unique()])),1 )
sample_edge_index, _ = add_remaining_self_loops(sample_edge_index)
if 'collate_fn' in kwargs:
del kwargs['collate_fn']
# Save for Pytorch Lightning...
self.do_filter_edges = do_filter_edges
self.relevant_node_idx = relevant_node_idx
self.n_nodes = n_nodes
self.all_edge_attr = all_edge_attributes
self.dataset_type = dataset_type
self.sparse_sample = sparse_sample
self.edge_index = edge_index #always train edge index
self.sample_edge_index = sample_edge_index # depends on train/val/test
self.patient_dataset = patient_dataset
self.num_nodes = num_nodes
self.train_phenotype_counter = train_phenotype_counter
self.train_gene_counter = train_gene_counter
self.sample_edges_from_train_patients = sample_edges_from_train_patients
self.sizes = sizes
self.return_e_id = return_e_id
self.transform = transform
self.is_sparse_tensor = isinstance(edge_index, SparseTensor)
self.__val__ = None
# For SPL
self.nid_to_spl_dict = nid_to_spl_dict
if hparams["alpha"] < 1: self.gp_spl = gp_spl
else: self.gp_spl = None
self.spl_indexing_dict = spl_indexing_dict
# Up-sample candidate genes
self.upsample_cand = upsample_cand
self.cand_gene_freq = Counter([])
with open(str(project_config.KG_DIR / f'ensembl_to_idx_dict_{project_config.CURR_KG}.pkl'), 'rb') as handle:
ensembl_to_idx_dict = pickle.load(handle) # create ensembl to node_idx map
idx_to_ensembl_dict = {v: k for k, v in ensembl_to_idx_dict.items()}
self.cand_gene_freq = Counter([k for k in nid_to_spl_dict if k in idx_to_ensembl_dict]) # Upsample from all gene nodes in the KG
self.n_cand_diseases = n_cand_diseases
self.use_diseases = use_diseases
self.hparams = hparams
self.gene_similarity_dict = gene_similarity_dict
self.gene_deg_dict = gene_deg_dict
# Obtain a *transposed* `SparseTensor` instance.
if not self.is_sparse_tensor:
if num_nodes is None:
num_nodes = int(edge_index.max()) + 1
sample_num_nodes = int(sample_edge_index.max()) + 1
value = torch.arange(edge_index.size(1)) if return_e_id else None
sample_value = torch.arange(sample_edge_index.size(1)) if return_e_id else None
self.adj_t = SparseTensor(row=edge_index[0], col=edge_index[1],
value=value,
sparse_sizes=(num_nodes, num_nodes)).t()
self.adj_t_sample = SparseTensor(row=sample_edge_index[0], col=sample_edge_index[1],
value=sample_value,
sparse_sizes=(sample_num_nodes, sample_num_nodes)).t()
else:
adj_t = edge_index
adj_t_sample = sample_edge_index
if return_e_id:
self.__val__ = adj_t.storage.value()
value = torch.arange(adj_t.nnz())
adj_t = adj_t.set_value(value, layout='coo')
adj_t_sample = adj_t_sample.set_value(torch.arange(adj_t_sample.nnz()), layout='coo')
self.adj_t = adj_t
self.adj_t_sample = adj_t_sample
self.adj_t.storage.rowptr()
self.adj_t_sample.storage.rowptr()
super(PatientNeighborSampler, self).__init__(
self.patient_dataset, collate_fn=self.collate, **kwargs)
def filter_edges(self, edge_index, e_id, source_nodes, target_nodes):
'''
Filter out the edges we're trying to predict in the current batch from the edge index
NOTE: edge_index here is re-indexed
'''
reindex_source_nodes = torch.arange(source_nodes.size(0))
reindex_target_nodes = torch.arange(start = source_nodes.size(0), end = source_nodes.size(0) + target_nodes.size(0))
# get reverse edges to filter as well
all_source_nodes = torch.cat([reindex_source_nodes, reindex_target_nodes])
all_target_nodes = torch.cat([reindex_target_nodes, reindex_source_nodes])
ind_to_edge_index, ind_to_nodes = get_indices_into_edge_index(edge_index, all_source_nodes, all_target_nodes) #get index into the original edge index (this returns e_ids)
mask = torch.ones(edge_index.size(1), dtype=torch.bool)
mask[ind_to_edge_index] = False
return edge_index[:, mask], e_id[mask]
def get_source_nodes(self, phenotype_node_idx, candidate_gene_node_idx, correct_genes_node_idx, disease_node_idx, candidate_disease_node_idx, sim_gene_node_idx):
# Get batch node indices based on patient phenotypes and genes
if sim_gene_node_idx is not None:
source_batch = torch.cat(phenotype_node_idx + candidate_gene_node_idx + correct_genes_node_idx + disease_node_idx + candidate_disease_node_idx + sim_gene_node_idx)
else:
source_batch = torch.cat(phenotype_node_idx + candidate_gene_node_idx + correct_genes_node_idx + disease_node_idx + candidate_disease_node_idx)
# Randomly sample nodes in KG
if self.sparse_sample > 0:
if self.relevant_node_idx == None:
rand_idx = torch.randint(high=self.n_nodes, size=(self.sparse_sample,)) # NOTE that this can sample duplicates, but has the benefit of randomly sampling new nodes each epoch
else:
rand_idx = self.relevant_node_idx[torch.randint(high=self.relevant_node_idx.size(0), size=(self.sparse_sample,))]
source_batch = torch.cat([source_batch, rand_idx])
source_batch = torch.unique(source_batch)
sparse_idx = torch.unique(rand_idx)
else:
source_batch = torch.unique(source_batch)
sparse_idx = torch.Tensor([])
return source_batch, sparse_idx
def sample_target_nodes(self, source_batch):
row, col, e_id = self.adj_t_sample.coo()
if self.sample_edges_from_train_patients:
train_patient_nodes = torch.tensor(list(self.train_phenotype_counter.keys()) + list(self.train_gene_counter.keys()))
ind_with_train_patient_nodes = (col == train_patient_nodes.unsqueeze(-1)).nonzero(as_tuple=True)[1]
subset_row = row[ind_with_train_patient_nodes]
subset_col = col[ind_with_train_patient_nodes]
try:
# first try to find an edge that connects back to the training set patient data
targets = random_walk(subset_row, subset_col, source_batch, walk_length=1, coalesced=False)[:, 1] #NOTE: only does self loops when no edges in the current partition of the dataset
source_batch_1 = source_batch[~torch.eq(source_batch, targets)]
targets_1 = targets[~torch.eq(source_batch, targets)]
# if no edges are found, use all available edges in this split of the data
source_batch_2 = source_batch[torch.eq(source_batch, targets)]
targets_2 = random_walk(row, col, source_batch_2, walk_length=1, coalesced=False)[:, 1] #NOTE: only does self loops when no edges in the current partition of the dataset
#concat the two together
source_batch = torch.cat([source_batch_1, source_batch_2])
targets = torch.cat([targets_1, targets_2])
except:
targets = random_walk(row, col, source_batch, walk_length=1, coalesced=False)[:, 1] #NOTE: only does self loops when no edges in the current partition of the dataset
else:
targets = random_walk(row, col, source_batch, walk_length=1, coalesced=False)[:, 1] #NOTE: only does self loops when no edges in the current partition of the dataset
return source_batch, targets
def add_patient_information(self, patient_ids, phenotype_node_idx, candidate_gene_node_idx, correct_genes_node_idx, sim_gene_node_idx, gene_sims, gene_degs, disease_node_idx, candidate_disease_node_idx, labels, disease_labels, patient_labels, additional_labels, adjs, batch_size, n_id, sparse_idx, target_batch): #candidate_disease_node_idx
# Create Data Object & Add patient level information
adjs = [HeterogeneousEdgeIndex(adj.edge_index, adj.e_id, self.all_edge_attr[adj.e_id], adj.size) for adj in adjs]
max_n_candidates = max([len(l) for l in candidate_gene_node_idx])
data = Data(adjs = adjs,
batch_size = batch_size,
patient_ids = patient_ids,
n_id = n_id
)
if self.hparams['loss'] != 'patient_disease_NCA' and self.hparams['loss'] != 'patient_patient_NCA':
if None in list(labels): data['one_hot_labels'] = None
else: data['one_hot_labels'] = torch.LongTensor(label_binarize(labels, classes = list(range(max_n_candidates))))
if self.use_diseases:
data['disease_one_hot_labels'] = disease_labels
if self.hparams['loss'] == 'patient_patient_NCA':
if patient_labels is None: data['patient_labels'] = None
else: data['patient_labels'] = torch.stack(patient_labels)
# Get candidate genes to phenotypes SPL
if not self.gp_spl is None:
if not self.spl_indexing_dict is None:
patient_ids = np.vectorize(self.spl_indexing_dict.get)(patient_ids).astype(int)
gene_to_phenotypes_spl = -torch.Tensor(self.gp_spl[patient_ids,:])
# get gene idx to spl information
cand_gene_idx_to_spl = [torch.LongTensor(np.vectorize(self.nid_to_spl_dict.get)(cand_genes)) for cand_genes in list(candidate_gene_node_idx)]
# get SPLs for each patient's candidate genes
batch_cand_gene_to_phenotypes_spl = [gene_spls[cand_genes] for cand_genes, gene_spls in zip(cand_gene_idx_to_spl, gene_to_phenotypes_spl)]
# pad to same # of candidate genes
data['batch_cand_gene_to_phenotypes_spl'] = pad_sequence(batch_cand_gene_to_phenotypes_spl, batch_first=True, padding_value=0)
# get unique gene idx across all patients in the batch
cand_gene_idx_flattened_unique = torch.unique(torch.cat(cand_gene_idx_to_spl)).flatten()
# get SPLs for unique genes in the batch
data['batch_concat_cand_gene_to_phenotypes_spl'] = gene_to_phenotypes_spl[:, cand_gene_idx_flattened_unique]
else:
data['batch_cand_gene_to_phenotypes_spl'] = None
data['batch_concat_cand_gene_to_phenotypes_spl'] = None
# Create mapping from KG node IDs to batch indices
node2batch = {n+1: int(i+1) for i, n in enumerate(data.n_id.tolist())}
node2batch[0] = 0
# add phenotype / gene / disease names
data['phenotype_names'] = [[(self.patient_dataset.node_idx_to_name(p.item()), self.patient_dataset.node_idx_to_degree(p.item())) for p in p_list] for p_list in phenotype_node_idx ]
data['cand_gene_names'] = [[self.patient_dataset.node_idx_to_name(g.item()) for g in g_list] for g_list in candidate_gene_node_idx ]
data['corr_gene_names'] = [[self.patient_dataset.node_idx_to_name(g.item()) for g in g_list] for g_list in correct_genes_node_idx ]
data['disease_names'] = [[self.patient_dataset.node_idx_to_name(d.item()) for d in d_list] for d_list in disease_node_idx ]
if self.use_diseases:
data['cand_disease_names'] = [[self.patient_dataset.node_idx_to_name(d.item()) for d in d_list] for d_list in candidate_disease_node_idx ]
#reindex nodes to make room for padding
phenotype_node_idx = [p + 1 for p in phenotype_node_idx]
candidate_gene_node_idx = [g + 1 for g in candidate_gene_node_idx]
correct_genes_node_idx = [g + 1 for g in correct_genes_node_idx]
if self.use_diseases:
disease_node_idx = [d + 1 for d in disease_node_idx]
candidate_disease_node_idx = [d + 1 for d in candidate_disease_node_idx]
if 'augment_genes' in self.hparams and self.hparams['augment_genes']:
sim_gene_node_idx = [g + 1 for g in sim_gene_node_idx]
# if there aren't any disease idx in the batch, we add filler
if self.use_diseases:
if all(len(t) == 0 for t in disease_node_idx):
disease_node_idx = [torch.LongTensor([0]) for i in range(len(disease_node_idx))]
if all(len(t) == 0 for t in candidate_disease_node_idx):
candidate_disease_node_idx = [torch.LongTensor([0]) for i in range(len(candidate_disease_node_idx))]
# add padding to patient phenotype and gene node idx
data['batch_pheno_nid'] = pad_sequence(phenotype_node_idx, batch_first=True, padding_value=0)
if len(candidate_gene_node_idx[0]) > 0:
data['batch_cand_gene_nid'] = pad_sequence(candidate_gene_node_idx, batch_first=True, padding_value=0)
data['batch_corr_gene_nid'] = pad_sequence(correct_genes_node_idx, batch_first=True, padding_value=0)
if self.use_diseases:
data['batch_disease_nid'] = pad_sequence(disease_node_idx, batch_first=True, padding_value=0)
data['batch_cand_disease_nid'] = pad_sequence(candidate_disease_node_idx, batch_first=True, padding_value=0)
if 'augment_genes' in self.hparams and self.hparams['augment_genes']:
data['batch_cand_gene_degs'] = pad_sequence(gene_degs, batch_first=True, padding_value=0)
data['batch_sim_gene_nid'] = pad_sequence(sim_gene_node_idx, batch_first=True, padding_value=0)
data['batch_sim_gene_sims'] = pad_sequence(gene_sims, batch_first=True, padding_value=0)
# Normalize
data['batch_sim_gene_sims'] = data['batch_sim_gene_sims'] / torch.sum(data['batch_sim_gene_sims'], dim=1, keepdim=True)
else:
if len(candidate_gene_node_idx[0]) > 0:
data['batch_cand_gene_nid'] = pad_sequence(candidate_gene_node_idx, batch_first=True, padding_value=0)
# Convert KG node IDs to batch IDs
# When performing inference (i.e., predict.py), use the original node IDs because the full KG is used in forward pass of node model
if self.dataset_type != "predict":
data['batch_pheno_nid'] = torch.LongTensor(np.vectorize(node2batch.get)(data['batch_pheno_nid']))
if len(candidate_gene_node_idx[0]) > 0:
data['batch_cand_gene_nid'] = torch.LongTensor(np.vectorize(node2batch.get)(data['batch_cand_gene_nid']))
if len(correct_genes_node_idx[0]) > 0:
data['batch_corr_gene_nid'] = torch.LongTensor(np.vectorize(node2batch.get)(data['batch_corr_gene_nid']))
if self.use_diseases:
data['batch_disease_nid'] = torch.LongTensor(np.vectorize(node2batch.get)(data['batch_disease_nid']))
data['batch_cand_disease_nid'] = torch.LongTensor(np.vectorize(node2batch.get)(data['batch_cand_disease_nid']))
if 'augment_genes' in self.hparams and self.hparams['augment_genes']:
data['batch_sim_gene_nid'] = torch.LongTensor(np.vectorize(node2batch.get)(data['batch_sim_gene_nid']))
return data
def get_candidate_diseases(self, disease_node_idx, candidate_gene_node_idx):
cand_diseases = self.patient_dataset.get_candidate_diseases(cand_type=self.hparams['candidate_disease_type'])
if self.n_cand_diseases != -1: cand_diseases = cand_diseases[torch.randperm(len(cand_diseases))][0:self.n_cand_diseases]
if self.hparams['only_hard_distractors']: #add candidates to every patient
candidate_disease_node_idx = tuple(torch.unique(torch.cat([corr_dis, cand_diseases ]), sorted=False) for corr_dis in disease_node_idx)
candidate_disease_node_idx = tuple(torch.unique(dis[torch.randperm(len(dis))], sorted=False, return_inverse=False, return_counts=False) for dis in candidate_disease_node_idx)
else: # split candidates across all patients in the batch
all_correct_diseases = torch.cat(disease_node_idx)
all_diseases = torch.unique(torch.cat([all_correct_diseases, cand_diseases]))
all_diseases = all_diseases[torch.randperm(len(all_diseases))]
candidate_disease_node_idx = np.array_split(all_diseases, len(candidate_gene_node_idx))
candidate_disease_node_idx = tuple(candidate_disease_node_idx)
max_n_dis_candidates = max([len(l) for l in candidate_disease_node_idx])
if max_n_dis_candidates == 0:
max_n_dis_candidates = 1
print('WARNING: there are no disease candidates')
disease_ind = [(dis.unsqueeze(1) == corr_dis.unsqueeze(0)).nonzero(as_tuple=True)[0] if len(corr_dis) > 0 else torch.tensor(-1) for dis, corr_dis in zip(candidate_disease_node_idx, disease_node_idx)]
disease_labels = torch.zeros((len(candidate_disease_node_idx), max_n_dis_candidates))
for i, ind in enumerate(disease_ind): disease_labels[i,ind[ind != -1]] = 1
return candidate_disease_node_idx, disease_labels
def get_candidate_patients(self, patient_ids):
# get patients with the same disease/gene
similar_pat_ids = [self.patient_dataset.get_similar_patients(p_id, similarity_type=self.hparams['patient_similarity_type']) for p_id in patient_ids]
# shuffle patients & subset to n_sim_pats so we have X similar patients per patient in the batch
similar_pat_ids = [p[:self.hparams['n_similar_patients']] for p in similar_pat_ids] #[torch.randperm(len(p))]
# Retrieve the patients for each of the sampled patient ids if they aren't already in the batch
patient_ids = list(patient_ids)
similar_pats = [self.patient_dataset[self.patient_dataset.patient_id_to_index[p_id.item()]] for p_ids in similar_pat_ids for p_id in p_ids if p_id.item() not in patient_ids]
return similar_pats
def sample(self, batch, source_batch, target_batch):
batch_size: int = len(batch)
adjs = []
n_id = batch
for size in self.sizes:
adj_t, n_id = self.adj_t.sample_adj(n_id, size, replace=False)
e_id = adj_t.storage.value()
size = adj_t.sparse_sizes()[::-1]
if self.__val__ is not None:
adj_t.set_value_(self.__val__[e_id], layout='coo')
if self.is_sparse_tensor: #TODO: implement filter_edges if sparse tensor
adjs.append(Adj(adj_t, e_id, size))
else:
row, col, _ = adj_t.coo()
edge_index = torch.stack([col, row], dim=0)
if self.do_filter_edges and self.dataset_type == 'train':
edge_index, e_id = self.filter_edges(edge_index, e_id, source_batch, target_batch)
adjs.append(EdgeIndex(edge_index, e_id, size))
adjs = [adjs[0]] if len(adjs) == 1 else adjs[::-1]
return adjs, batch_size, n_id
def get_similar_genes(self, patient_ids, candidate_gene_node_idx):
k = self.hparams['n_sim_genes']
gene_ids = []
sims = []
degs = []
assert len(patient_ids) == len(candidate_gene_node_idx)
for p, p_cand_genes in zip(patient_ids, candidate_gene_node_idx):
p_genes = []
p_sims = []
p_degs = []
for g in p_cand_genes:
p_genes.append(torch.LongTensor([idx for idx, sim in list(self.gene_similarity_dict[int(g)])[:k]]))
p_sims.append(torch.LongTensor([sim for idx, sim in list(self.gene_similarity_dict[int(g)])[:k]]))
p_degs.append(self.gene_deg_dict[int(g)])
gene_ids.append(torch.stack(p_genes))
sims.append(torch.stack(p_sims))
degs.append(torch.LongTensor(p_degs))
assert len(gene_ids) == len(patient_ids)
assert len(sims) == len(patient_ids)
unique_genes = torch.unique(torch.cat(gene_ids).flatten()).unsqueeze(-1)
return tuple(gene_ids), tuple(sims), tuple(degs), tuple(unique_genes)
def collate(self, batch):
t00 = time.time()
phenotype_node_idx, candidate_gene_node_idx, correct_genes_node_idx, disease_node_idx, labels, additional_labels, patient_ids = zip(*batch)
# Up-sample under-represented candidate genes
t0 = time.time()
if self.upsample_cand > 0:
curr_cand_gene_freq = Counter(torch.cat(candidate_gene_node_idx).flatten().tolist())
self.cand_gene_freq += curr_cand_gene_freq
num_patients = len(candidate_gene_node_idx) * self.upsample_cand
lowest_k_cand = self.cand_gene_freq.most_common()[:-num_patients-1:-1]
lowest_k_cand = np.array_split([g[0] for g in lowest_k_cand], len(candidate_gene_node_idx))
upsampled_candidate_gene_node_idx = []
added_cand_gene = []
for patient, cand_gene, corr_gene_idx in zip(candidate_gene_node_idx, lowest_k_cand, labels):
# Remove correct genes from list of upsampled candidate genes
corr_gene_nid = patient[corr_gene_idx]
cand_gene = cand_gene[~np.isin(cand_gene, corr_gene_nid)].flatten()
# Remove duplicates
unique_cand_genes, new_cand_genes_freq = torch.unique(torch.tensor(patient.tolist() + list(cand_gene)), return_counts = True)
unique_cand_genes = unique_cand_genes[new_cand_genes_freq == 1]
cand_gene = cand_gene[np.isin(cand_gene, unique_cand_genes)]
# Add upsampled candidate genes
added_cand_gene.extend(list(cand_gene))
new_cand_list = torch.tensor(patient.tolist() + list(cand_gene))
upsampled_candidate_gene_node_idx.append(new_cand_list)
candidate_gene_node_idx = tuple(upsampled_candidate_gene_node_idx)
self.cand_gene_freq += Counter(added_cand_gene)
# Add similar patients to batch (for "patients like me" head)
if self.hparams['add_similar_patients']:
similar_pats = self.get_candidate_patients(patient_ids)
# merge original batch with sampled patients
phenotype_node_idx_sim, candidate_gene_node_idx_sim, correct_genes_node_idx_sim, disease_node_idx_sim, labels_sim, additional_labels_sim, patient_ids_sim = zip(*similar_pats)
phenotype_node_idx = phenotype_node_idx + phenotype_node_idx_sim
candidate_gene_node_idx = candidate_gene_node_idx + candidate_gene_node_idx_sim
correct_genes_node_idx = correct_genes_node_idx + correct_genes_node_idx_sim
disease_node_idx = disease_node_idx + disease_node_idx_sim
labels = labels + labels_sim
additional_labels = additional_labels + additional_labels_sim
patient_ids = patient_ids + patient_ids_sim
# get patient labels
patient_labels = correct_genes_node_idx
# Add candidate diseases to batch
if self.hparams['add_cand_diseases']:
candidate_disease_node_idx, disease_labels = self.get_candidate_diseases(disease_node_idx, candidate_gene_node_idx)
else:
candidate_disease_node_idx = disease_node_idx
disease_labels = torch.tensor([1] * len(candidate_disease_node_idx))
if self.hparams['augment_genes']:
sim_gene_node_idx, gene_sims, gene_degs, unique_sim_genes = self.get_similar_genes(patient_ids, candidate_gene_node_idx)
else:
unique_sim_genes = gene_degs = gene_sims = sim_gene_node_idx = None
t1 = time.time()
# get nodes from patients + randomly sampled nodes
source_batch, sparse_idx = self.get_source_nodes(phenotype_node_idx, candidate_gene_node_idx, correct_genes_node_idx, disease_node_idx, candidate_disease_node_idx, unique_sim_genes)
# sample nodes to form positive edges
source_batch, target_batch = self.sample_target_nodes(source_batch)
batch = torch.cat([source_batch, target_batch], dim=0)
t2 = time.time()
# get k hop adj graph
adjs, batch_size, n_id = self.sample(batch, source_batch, target_batch)
t3 = time.time()
# add patient information to data object
data = self.add_patient_information(patient_ids, phenotype_node_idx, candidate_gene_node_idx, correct_genes_node_idx, sim_gene_node_idx, gene_sims, gene_degs, disease_node_idx, candidate_disease_node_idx, labels, disease_labels, patient_labels, additional_labels, adjs, batch_size, n_id, sparse_idx, target_batch) #candidate_disease_node_idx
t4 = time.time()
if self.hparams['time']:
print(f'It takes {t0-t00:0.4f}s to unzip batch, {t1-t0:0.4f}s to upsample candidate gene nodes, {t2-t1:0.4f}s to sample positive nodes, {t3-t2:0.4f}s to get k-hop adjs, and {t4-t3:0.4f}s to add patient information')
return data
def __repr__(self):
return '{}(sizes={})'.format(self.__class__.__name__, self.sizes)