[bdbb47]: / shepherd / utils / loss_utils.py

Download this file

271 lines (217 with data), 12.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from pytorch_metric_learning.distances import LpDistance
from pytorch_metric_learning.utils import common_functions as c_f
from pytorch_metric_learning.utils import loss_and_miner_utils as lmu
from pytorch_metric_learning.losses import BaseMetricLossFunction
import torch, torch.nn as nn, torch.nn.functional as F, numpy as np
def unique(x, dim=None):
"""Unique elements of x and indices of those unique elements
https://github.com/pytorch/pytorch/issues/36748#issuecomment-619514810
e.g.
unique(tensor([
[1, 2, 3],
[1, 2, 4],
[1, 2, 3],
[1, 2, 5]
]), dim=0)
=> (tensor([[1, 2, 3],
[1, 2, 4],
[1, 2, 5]]),
tensor([0, 1, 3]))
"""
unique, inverse = torch.unique(
x, sorted=True, return_inverse=True, dim=dim)
perm = torch.arange(inverse.size(0), dtype=inverse.dtype,
device=inverse.device)
inverse, perm = inverse.flip([0]), perm.flip([0])
return unique, inverse.new_empty(unique.size(dim)).scatter_(0, inverse, perm)
def _construct_labels(candidate_embeddings, candidate_node_idx, correct_node_idx, mask):
'''
Format the batch to input into metric learning loss function
'''
batch, n_candidates, embed_dim = candidate_embeddings.shape
# get mask
mask_reshaped = mask.reshape(batch*n_candidates, -1)
expanded_mask = mask_reshaped.expand(-1,embed_dim)
# flatten the gene node idx and gene embeddings
candidate_node_idx_flattened = candidate_node_idx.view(batch*n_candidates, -1)
candidate_embeddings_flattened = candidate_embeddings.view(batch*n_candidates, -1)
candidate_embeddings_flattened = candidate_embeddings_flattened * expanded_mask
# get unique node idx & corresponding embeddings
candidate_node_idx_flattened_unique, unique_ind = unique(candidate_node_idx_flattened, dim=0)
candidate_embeddings_flattened_unique = candidate_embeddings_flattened[unique_ind,:]
# remove padding
if candidate_node_idx_flattened_unique[0] == 0:
candidate_embeddings_flattened_unique = candidate_embeddings_flattened_unique[1:,:]
candidate_node_idx_flattened_unique = candidate_node_idx_flattened_unique[1:, :]
# create a one hot encoding of correct gene/disease in the list of all in the batch
label_idx = torch.where(candidate_node_idx_flattened_unique.unsqueeze(1) == correct_node_idx.unsqueeze(0), 1, 0)
label_idx = label_idx.sum(dim=-1).T
return candidate_node_idx_flattened_unique, candidate_embeddings_flattened_unique, label_idx
def _construct_disease_labels(disease_embedding, batch_disease_nid):
if len(disease_embedding.shape) == 3:
batch, n_candidates, embed_dim = disease_embedding.shape
batch_disease_nid_reshaped = batch_disease_nid.view(batch*n_candidates, -1)
disease_embedding_reshaped = disease_embedding.view(batch*n_candidates, -1)
else:
batch_disease_nid_reshaped = batch_disease_nid
disease_embedding_reshaped = disease_embedding
# get unique diseases * corresponding embeddings in batch
batch_disease_nid_unique, unique_ind = unique(batch_disease_nid_reshaped, dim=0)
disease_embeddings_unique = disease_embedding_reshaped[unique_ind,:]
#remove padding
if batch_disease_nid_unique[0] == 0:
disease_embeddings_unique = disease_embeddings_unique[1:,:]
batch_disease_nid_unique = batch_disease_nid_unique[1:, :]
# create a one hot encoding of correct disease in the list of all diseases in the batch
label_idx = torch.where(batch_disease_nid_unique.T == batch_disease_nid_reshaped, 1, 0)
if len(disease_embedding.shape) == 3: #need to reshape the label_idx
batch, n_candidates, embed_dim = disease_embedding.shape
label_idx = label_idx.view(batch, n_candidates, -1)
label_idx = torch.sum(label_idx, dim=1)
return disease_embeddings_unique, label_idx
### https://github.com/Confusezius/Revisiting_Deep_Metric_Learning_PyTorch/blob/master/criteria/multisimilarity.py
class MultisimilarityCriterion(torch.nn.Module):
def __init__(self, pos_weight, neg_weight, margin, thresh,
embed_dim, only_hard_distractors=True):
super().__init__()
self.pos_weight = pos_weight
self.neg_weight = neg_weight
self.margin = margin
self.thresh = thresh
self.only_hard_distractors = only_hard_distractors
def forward(self, sims, mask, one_hot_labels, **kwargs):
loss = []
pos_terms, neg_terms = [], []
for i in range(sims.shape[0]):
pos_idxs = one_hot_labels[i,:] == 1
if self.only_hard_distractors:
curr_mask = mask[i,:]
neg_idxs = ((one_hot_labels[i,:] == 0) * curr_mask)
else:
neg_idxs = (one_hot_labels[i,:] == 0)
if not torch.sum(pos_idxs) or not torch.sum(neg_idxs):
print('No positive or negative examples available')
continue
anchor_pos_sim = sims[i][pos_idxs]
anchor_neg_sim = sims[i][neg_idxs]
neg_idxs = (anchor_neg_sim + self.margin) > torch.min(anchor_pos_sim)
pos_idxs = (anchor_pos_sim - self.margin) < torch.max(anchor_neg_sim)
if not torch.sum(neg_idxs):
print('No negative examples available - check 2')
elif not torch.sum(pos_idxs):
print('No positive examples available - check 2')
else:
anchor_neg_sim = anchor_neg_sim[neg_idxs]
anchor_pos_sim = anchor_pos_sim[pos_idxs]
pos_term = 1./self.pos_weight * torch.log(1+torch.sum(torch.exp(-self.pos_weight * (anchor_pos_sim - self.thresh))))
neg_term = 1./self.neg_weight * torch.log(1+torch.sum(torch.exp(self.neg_weight * (anchor_neg_sim - self.thresh))))
loss.append(pos_term + neg_term)
pos_terms.append(pos_term)
neg_terms.append(neg_term)
if loss == []:
loss = torch.Tensor([0]).to(sims.device)
pos_terms = torch.Tensor([0]).to(sims.device)
neg_terms = torch.Tensor([0]).to(sims.device)
loss.requires_grad = True
else:
loss = torch.mean(torch.stack(loss))
pos_terms = torch.mean(torch.stack(pos_terms))
neg_terms = torch.mean(torch.stack(neg_terms))
return loss
def construct_batch_labels(candidate_embeddings, candidate_node_idx, correct_node_idx, mask):
'''
Format the batch to input into metric learning loss function
'''
batch, n_candidates, embed_dim = candidate_embeddings.shape
# get mask
mask_reshaped = mask.reshape(batch*n_candidates, -1)
expanded_mask = mask_reshaped.expand(-1,embed_dim)
# flatten the gene node idx and gene embeddings
candidate_node_idx_flattened = candidate_node_idx.view(batch*n_candidates, -1)
candidate_embeddings_flattened = candidate_embeddings.view(batch*n_candidates, -1)
candidate_embeddings_flattened = candidate_embeddings_flattened * expanded_mask
# NOTE: assumes there are already unique values
candidate_node_idx_flattened_unique = candidate_node_idx_flattened[candidate_node_idx_flattened.squeeze() != 0]
candidate_embeddings_flattened_unique = candidate_embeddings_flattened[candidate_node_idx_flattened.squeeze() != 0,:]
# create a one hot encoding of correct gene/disease in the list of all in the batch
label_idx = torch.where(candidate_node_idx_flattened_unique.unsqueeze(1) == correct_node_idx.unsqueeze(0), 1, 0)
label_idx = label_idx.sum(dim=-1).T
return candidate_node_idx_flattened_unique, candidate_embeddings_flattened_unique, label_idx
class NCALoss(BaseMetricLossFunction):
def __init__(self, softmax_scale=1, only_hard_distractors=False, **kwargs):
super().__init__(**kwargs)
self.softmax_scale = softmax_scale
self.only_hard_distractors = only_hard_distractors
self.add_to_recordable_attributes(
list_of_names=["softmax_scale"], is_stat=False
)
def forward(self, phenotype_embedding, disease_embedding, batch_disease_nid, batch_cand_disease_nid=None, disease_mask=None, one_hot_labels=None, indices_tuple=None, use_candidate_list=False):
"""
Args:
embeddings: tensor of size (batch_size, embedding_size)
labels: tensor of size (batch_size)
indices_tuple: tuple of size 3 for triplets (anchors, positives, negatives)
or size 4 for pairs (anchor1, postives, anchor2, negatives)
Can also be left as None
Returns: the loss
"""
self.reset_stats()
loss_dict, disease_softmax, one_hot_labels, candidate_disease_idx, candidate_disease_embeddings = self.compute_loss(phenotype_embedding, disease_embedding, batch_disease_nid, batch_cand_disease_nid, disease_mask, one_hot_labels, indices_tuple, use_candidate_list)
self.add_embedding_regularization_to_loss_dict(loss_dict, phenotype_embedding)
if loss_dict is None: reduction = None
else: reduction = self.reducer(loss_dict, None, None)
return reduction, disease_softmax, one_hot_labels, candidate_disease_idx, candidate_disease_embeddings
# https://www.cs.toronto.edu/~hinton/absps/nca.pdf
def compute_loss(self, phenotype_embedding, disease_embedding, batch_corr_disease_nid, batch_cand_disease_nid, disease_mask, labels, indices_tuple, use_candidate_list):
if len(phenotype_embedding) <= 1:
return self.zero_losses(), None, None
if disease_embedding is None: #phenotype-phenotypes
loss_dict, disease_softmax, labels = self.nca_computation(
phenotype_embedding, phenotype_embedding, labels, indices_tuple, use_one_hot_labels=False
)
candidate_disease_idx = None
candidate_disease_embeddings = None
else:
# disease-phenotypes
if self.only_hard_distractors or use_candidate_list:
candidate_disease_embeddings = disease_embedding
phenotype_embedding = phenotype_embedding.unsqueeze(1)
else:
candidate_disease_idx, candidate_disease_embeddings, labels = construct_batch_labels(disease_embedding, batch_cand_disease_nid, batch_corr_disease_nid, disease_mask)
loss_dict, disease_softmax, labels = self.nca_computation(
phenotype_embedding, candidate_disease_embeddings, labels, indices_tuple, use_one_hot_labels=True
)
return loss_dict, disease_softmax, labels, candidate_disease_idx, candidate_disease_embeddings
def nca_computation(
self, query, reference, labels, indices_tuple, use_one_hot_labels
):
dtype = query.dtype
mat = self.distance(query, reference)
if not self.distance.is_inverted:
mat = -mat
mat = mat.squeeze(1)
if query is reference:
mat.fill_diagonal_(c_f.neg_inf(dtype))
softmax = torch.nn.functional.softmax(self.softmax_scale * mat, dim=1)
if labels.nelement() == 0:
loss_dict = None
else:
if not use_one_hot_labels:
labels = c_f.to_dtype(
labels.unsqueeze(1) == labels.unsqueeze(0), dtype=dtype
)
labels = labels.squeeze(-1)
exp = torch.sum(softmax * labels, dim=1)
non_zero = exp != 0
loss = -torch.log(exp[non_zero])
indices = c_f.torch_arange_from_size(query)[non_zero]
loss_dict = {
"loss": {
"losses": loss,
"indices": indices,
"reduction_type": "element",
}
}
return loss_dict, softmax, labels
def get_default_distance(self):
return LpDistance(power=2)