Download this file

47 lines (31 with data), 1.1 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# -*- coding: utf-8 -*-
"""KNN.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1p90EngR7skAHqdMPNlTz7xUU3Gan4k1S
"""
import pandas as pd
import pickle
df = pd.read_csv('upscale.csv')
df.head(10)
df = df.drop(columns="Hybridization REF")
from sklearn.model_selection import train_test_split
training_set, test_set = train_test_split(df, test_size = 0.2, random_state = 1)
X_train = training_set.iloc[:,0:21].values
Y_train = training_set.iloc[:,21].values
X_test = test_set.iloc[:,0:21].values
Y_test = test_set.iloc[:,21].values
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=15)
knn.fit(X_train,Y_train)
y_pred = knn.predict(X_test)
from sklearn.metrics import accuracy_score
accuracy_score(Y_test,y_pred)
from sklearn.metrics import precision_score, recall_score, f1_score
precision = precision_score(Y_test,y_pred)
print(precision)
recall_score(Y_test, y_pred)
f1_score(Y_test, y_pred)
#serialization and de-serialization
pickle.dump(knn, open('model1.pkl','wb'))
model = pickle.load(open('model1.pkl', 'rb'))