import argparse
import os
import torch
### Parser
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataroot', default='./data/TCGA_GBMLGG', help="datasets")
parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints/TCGA_GBMLGG', help='models are saved here')
parser.add_argument('--exp_name', type=str, default='exp_name', help='name of the project. It decides where to store samples and models')
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
parser.add_argument('--mode', type=str, default='omic', help='mode')
parser.add_argument('--model_name', type=str, default='omic', help='mode')
parser.add_argument('--use_vgg_features', type=int, default=0, help='Use pretrained embeddings')
parser.add_argument('--use_rnaseq', type=int, default=0, help='Use RNAseq data.')
parser.add_argument('--task', type=str, default='surv', help='surv | grad')
parser.add_argument('--useRNA', type=int, default=0) # Doesn't work at the moment...:(
parser.add_argument('--useSN', type=int, default=1)
parser.add_argument('--act_type', type=str, default='Sigmoid', help='activation function')
parser.add_argument('--input_size_omic', type=int, default=80, help="input_size for omic vector")
parser.add_argument('--input_size_path', type=int, default=512, help="input_size for path images")
parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.')
parser.add_argument('--save_at', type=int, default=20, help="adsfasdf")
parser.add_argument('--label_dim', type=int, default=1, help='size of output')
parser.add_argument('--measure', default=1, type=int, help='disables measure while training (make program faster)')
parser.add_argument('--verbose', default=1, type=int)
parser.add_argument('--print_every', default=0, type=int)
parser.add_argument('--optimizer_type', type=str, default='adam')
parser.add_argument('--beta1', type=float, default=0.9, help='0.9, 0.5 | 0.25 | 0')
parser.add_argument('--beta2', type=float, default=0.999, help='0.9, 0.5 | 0.25 | 0')
parser.add_argument('--lr_policy', default='linear', type=str, help='5e-4 for Adam | 1e-3 for AdaBound')
parser.add_argument('--finetune', default=1, type=int, help='5e-4 for Adam | 1e-3 for AdaBound')
parser.add_argument('--final_lr', default=0.1, type=float, help='Used for AdaBound')
parser.add_argument('--reg_type', default='omic', type=str, help="regularization type")
parser.add_argument('--niter', type=int, default=0, help='# of iter at starting learning rate')
parser.add_argument('--niter_decay', type=int, default=25, help='# of iter to linearly decay learning rate to zero')
parser.add_argument('--epoch_count', type=int, default=1, help='start of epoch')
parser.add_argument('--batch_size', type=int, default=32, help="Number of batches to train/test for. Default: 256")
parser.add_argument('--lambda_cox', type=float, default=1)
parser.add_argument('--lambda_reg', type=float, default=3e-4)
parser.add_argument('--lambda_nll', type=float, default=1)
parser.add_argument('--fusion_type', type=str, default="pofusion", help='concat | pofusion')
parser.add_argument('--skip', type=int, default=0)
parser.add_argument('--use_bilinear', type=int, default=1)
parser.add_argument('--path_gate', type=int, default=1)
parser.add_argument('--grph_gate', type=int, default=1)
parser.add_argument('--omic_gate', type=int, default=1)
parser.add_argument('--path_dim', type=int, default=32)
parser.add_argument('--grph_dim', type=int, default=32)
parser.add_argument('--omic_dim', type=int, default=32)
parser.add_argument('--path_scale', type=int, default=1)
parser.add_argument('--grph_scale', type=int, default=1)
parser.add_argument('--omic_scale', type=int, default=1)
parser.add_argument('--mmhid', type=int, default=64)
parser.add_argument('--init_type', type=str, default='none', help='network initialization [normal | xavier | kaiming | orthogonal | max]. Max seems to work well')
parser.add_argument('--dropout_rate', default=0.25, type=float, help='0 - 0.25. Increasing dropout_rate helps overfitting. Some people have gone as high as 0.5. You can try adding more regularization')
parser.add_argument('--use_edges', default=1, type=float, help='Using edge_attr')
parser.add_argument('--pooling_ratio', default=0.2, type=float, help='pooling ratio for SAGPOOl')
parser.add_argument('--lr', default=2e-3, type=float, help='5e-4 for Adam | 1e-3 for AdaBound')
parser.add_argument('--weight_decay', default=4e-4, type=float, help='Used for Adam. L2 Regularization on weights. I normally turn this off if I am using L1. You should try')
parser.add_argument('--GNN', default='GCN', type=str, help='GCN | GAT | SAG. graph conv mode for pooling')
parser.add_argument('--patience', default=0.005, type=float)
opt = parser.parse_known_args()[0]
print_options(parser, opt)
opt = parse_gpuids(opt)
return opt
def print_options(parser, opt):
"""Print and save options
It will print both current options and default values(if different).
It will save options into a text file / [checkpoints_dir] / opt.txt
"""
message = ''
message += '----------------- Options ---------------\n'
for k, v in sorted(vars(opt).items()):
comment = ''
default = parser.get_default(k)
if v != default:
comment = '\t[default: %s]' % str(default)
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
message += '----------------- End -------------------'
print(message)
# save to the disk
expr_dir = os.path.join(opt.checkpoints_dir, opt.exp_name, opt.model_name)
mkdirs(expr_dir)
file_name = os.path.join(expr_dir, '{}_opt.txt'.format('train'))
with open(file_name, 'wt') as opt_file:
opt_file.write(message)
opt_file.write('\n')
def parse_gpuids(opt):
# set gpu ids
str_ids = opt.gpu_ids.split(',')
opt.gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
opt.gpu_ids.append(id)
if len(opt.gpu_ids) > 0:
torch.cuda.set_device(opt.gpu_ids[0])
return opt
def mkdirs(paths):
"""create empty directories if they don't exist
Parameters:
paths (str list) -- a list of directory paths
"""
if isinstance(paths, list) and not isinstance(paths, str):
for path in paths:
mkdir(path)
else:
mkdir(paths)
def mkdir(path):
"""create a single empty directory if it didn't exist
Parameters:
path (str) -- a single directory path
"""
if not os.path.exists(path):
os.makedirs(path)