# Base / Native
import csv
from collections import Counter
import copy
import json
import functools
import gc
import logging
import math
import os
import pdb
import pickle
import random
import sys
import tables
import time
from tqdm import tqdm
# Numerical / Array
import numpy as np
# Torch
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch import Tensor
from torch.autograd import Variable
from torch.nn import init, Parameter
from torch.utils.data import DataLoader
from torch.utils.model_zoo import load_url as load_state_dict_from_url
from torchvision import datasets, transforms
import torch.optim.lr_scheduler as lr_scheduler
from torch_geometric.nn import GCNConv, SAGEConv, GraphConv, GatedGraphConv, GATConv
from torch_geometric.nn import GraphConv, TopKPooling, SAGPooling
from torch_geometric.nn import global_mean_pool as gap, global_max_pool as gmp
from torch_geometric.transforms.normalize_features import NormalizeFeatures
# Env
from fusion import *
from options import parse_args
from utils import *
################
# Network Utils
################
def define_net(opt, k):
net = None
act = define_act_layer(act_type=opt.act_type)
init_max = True if opt.init_type == "max" else False
if opt.mode == "path":
net = get_vgg(path_dim=opt.path_dim, act=act, label_dim=opt.label_dim)
elif opt.mode == "graph":
net = GraphNet(grph_dim=opt.grph_dim, dropout_rate=opt.dropout_rate, GNN=opt.GNN, use_edges=opt.use_edges, pooling_ratio=opt.pooling_ratio, act=act, label_dim=opt.label_dim, init_max=init_max)
elif opt.mode == "omic":
net = MaxNet(input_dim=opt.input_size_omic, omic_dim=opt.omic_dim, dropout_rate=opt.dropout_rate, act=act, label_dim=opt.label_dim, init_max=init_max)
elif opt.mode == "graphomic":
net = GraphomicNet(opt=opt, act=act, k=k)
elif opt.mode == "pathomic":
net = PathomicNet(opt=opt, act=act, k=k)
elif opt.mode == "pathgraphomic":
net = PathgraphomicNet(opt=opt, act=act, k=k)
elif opt.mode == "pathpath":
net = PathpathNet(opt=opt, act=act, k=k)
elif opt.mode == "graphgraph":
net = GraphgraphNet(opt=opt, act=act, k=k)
elif opt.mode == "omicomic":
net = OmicomicNet(opt=opt, act=act, k=k)
else:
raise NotImplementedError('model [%s] is not implemented' % opt.model)
return init_net(net, opt.init_type, opt.init_gain, opt.gpu_ids)
def define_optimizer(opt, model):
optimizer = None
if opt.optimizer_type == 'adabound':
optimizer = adabound.AdaBound(model.parameters(), lr=opt.lr, final_lr=opt.final_lr)
elif opt.optimizer_type == 'adam':
optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2), weight_decay=opt.weight_decay)
elif opt.optimizer_type == 'adagrad':
optimizer = torch.optim.Adagrad(model.parameters(), lr=opt.lr, weight_decay=opt.weight_decay, initial_accumulator_value=0.1)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % opt.optimizer)
return optimizer
def define_reg(opt, model):
loss_reg = None
if opt.reg_type == 'none':
loss_reg = 0
elif opt.reg_type == 'path':
loss_reg = regularize_path_weights(model=model)
elif opt.reg_type == 'mm':
loss_reg = regularize_MM_weights(model=model)
elif opt.reg_type == 'all':
loss_reg = regularize_weights(model=model)
elif opt.reg_type == 'omic':
loss_reg = regularize_MM_omic(model=model)
else:
raise NotImplementedError('reg method [%s] is not implemented' % opt.reg_type)
return loss_reg
def define_scheduler(opt, optimizer):
if opt.lr_policy == 'linear':
def lambda_rule(epoch):
lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.niter) / float(opt.niter_decay + 1)
return lr_l
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
elif opt.lr_policy == 'exp':
scheduler = lr_scheduler.ExponentialLR(optimizer, 0.1, last_epoch=-1)
elif opt.lr_policy == 'step':
scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1)
elif opt.lr_policy == 'plateau':
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
elif opt.lr_policy == 'cosine':
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.niter, eta_min=0)
else:
return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
return scheduler
def define_act_layer(act_type='Tanh'):
if act_type == 'Tanh':
act_layer = nn.Tanh()
elif act_type == 'ReLU':
act_layer = nn.ReLU()
elif act_type == 'Sigmoid':
act_layer = nn.Sigmoid()
elif act_type == 'LSM':
act_layer = nn.LogSoftmax(dim=1)
elif act_type == "none":
act_layer = None
else:
raise NotImplementedError('activation layer [%s] is not found' % act_type)
return act_layer
def define_bifusion(fusion_type, skip=1, use_bilinear=1, gate1=1, gate2=1, dim1=32, dim2=32, scale_dim1=1, scale_dim2=1, mmhid=64, dropout_rate=0.25):
fusion = None
if fusion_type == 'pofusion':
fusion = BilinearFusion(skip=skip, use_bilinear=use_bilinear, gate1=gate1, gate2=gate2, dim1=dim1, dim2=dim2, scale_dim1=scale_dim1, scale_dim2=scale_dim2, mmhid=mmhid, dropout_rate=dropout_rate)
else:
raise NotImplementedError('fusion type [%s] is not found' % fusion_type)
return fusion
def define_trifusion(fusion_type, skip=1, use_bilinear=1, gate1=1, gate2=1, gate3=3, dim1=32, dim2=32, dim3=32, scale_dim1=1, scale_dim2=1, scale_dim3=1, mmhid=96, dropout_rate=0.25):
fusion = None
if fusion_type == 'pofusion_A':
fusion = TrilinearFusion_A(skip=skip, use_bilinear=use_bilinear, gate1=gate1, gate2=gate2, gate3=gate3, dim1=dim1, dim2=dim2, dim3=dim3, scale_dim1=scale_dim1, scale_dim2=scale_dim2, scale_dim3=scale_dim3, mmhid=mmhid, dropout_rate=dropout_rate)
elif fusion_type == 'pofusion_B':
fusion = TrilinearFusion_B(skip=skip, use_bilinear=use_bilinear, gate1=gate1, gate2=gate2, gate3=gate3, dim1=dim1, dim2=dim2, dim3=dim3, scale_dim1=scale_dim1, scale_dim2=scale_dim2, scale_dim3=scale_dim3, mmhid=mmhid, dropout_rate=dropout_rate)
else:
raise NotImplementedError('fusion type [%s] is not found' % fusion_type)
return fusion
############
# Omic Model
############
class MaxNet(nn.Module):
def __init__(self, input_dim=80, omic_dim=32, dropout_rate=0.25, act=None, label_dim=1, init_max=True):
super(MaxNet, self).__init__()
hidden = [64, 48, 32, 32]
self.act = act
encoder1 = nn.Sequential(
nn.Linear(input_dim, hidden[0]),
nn.ELU(),
nn.AlphaDropout(p=dropout_rate, inplace=False))
encoder2 = nn.Sequential(
nn.Linear(hidden[0], hidden[1]),
nn.ELU(),
nn.AlphaDropout(p=dropout_rate, inplace=False))
encoder3 = nn.Sequential(
nn.Linear(hidden[1], hidden[2]),
nn.ELU(),
nn.AlphaDropout(p=dropout_rate, inplace=False))
encoder4 = nn.Sequential(
nn.Linear(hidden[2], omic_dim),
nn.ELU(),
nn.AlphaDropout(p=dropout_rate, inplace=False))
self.encoder = nn.Sequential(encoder1, encoder2, encoder3, encoder4)
self.classifier = nn.Sequential(nn.Linear(omic_dim, label_dim))
if init_max: init_max_weights(self)
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False)
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False)
def forward(self, **kwargs):
x = kwargs['x_omic']
features = self.encoder(x)
out = self.classifier(features)
if self.act is not None:
out = self.act(out)
if isinstance(self.act, nn.Sigmoid):
out = out * self.output_range + self.output_shift
return features, out
############
# Graph Model
############
class NormalizeFeaturesV2(object):
r"""Column-normalizes node features to sum-up to one."""
def __call__(self, data):
data.x = data.x / data.x.max(0, keepdim=True)[0]#.type(torch.cuda.FloatTensor)
return data
def __repr__(self):
return '{}()'.format(self.__class__.__name__)
class NormalizeFeaturesV2(object):
r"""Column-normalizes node features to sum-up to one."""
def __call__(self, data):
data.x[:, :12] = data.x[:, :12] / data.x[:, :12].max(0, keepdim=True)[0]
data.x = data.x.type(torch.cuda.FloatTensor)
return data
def __repr__(self):
return '{}()'.format(self.__class__.__name__)
class NormalizeEdgesV2(object):
r"""Column-normalizes node features to sum-up to one."""
def __call__(self, data):
data.edge_attr = data.edge_attr.type(torch.cuda.FloatTensor)
data.edge_attr = data.edge_attr / data.edge_attr.max(0, keepdim=True)[0]#.type(torch.cuda.FloatTensor)
return data
def __repr__(self):
return '{}()'.format(self.__class__.__name__)
class GraphNet(torch.nn.Module):
def __init__(self, features=1036, nhid=128, grph_dim=32, nonlinearity=torch.tanh,
dropout_rate=0.25, GNN='GCN', use_edges=0, pooling_ratio=0.20, act=None, label_dim=1, init_max=True):
super(GraphNet, self).__init__()
self.dropout_rate = dropout_rate
self.use_edges = use_edges
self.act = act
self.conv1 = SAGEConv(features, nhid)
self.pool1 = SAGPooling(nhid, ratio=pooling_ratio, gnn=GNN)#, nonlinearity=nonlinearity)
self.conv2 = SAGEConv(nhid, nhid)
self.pool2 = SAGPooling(nhid, ratio=pooling_ratio, gnn=GNN)#, nonlinearity=nonlinearity)
self.conv3 = SAGEConv(nhid, nhid)
self.pool3 = SAGPooling(nhid, ratio=pooling_ratio, gnn=GNN)#, nonlinearity=nonlinearity)
self.lin1 = torch.nn.Linear(nhid*2, nhid)
self.lin2 = torch.nn.Linear(nhid, grph_dim)
self.lin3 = torch.nn.Linear(grph_dim, label_dim)
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False)
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False)
if init_max:
init_max_weights(self)
print("Initialzing with Max")
def forward(self, **kwargs):
data = kwargs['x_grph']
data = NormalizeFeaturesV2()(data)
data = NormalizeEdgesV2()(data)
x, edge_index, edge_attr, batch = data.x, data.edge_index, data.edge_attr, data.batch
#x, edge_index, edge_attr, batch = data.x.type(torch.cuda.FloatTensor), data.edge_index.type(torch.cuda.LongTensor), data.edge_attr.type(torch.cuda.FloatTensor), data.batch
x = F.relu(self.conv1(x, edge_index))
x, edge_index, edge_attr, batch, _ = self.pool1(x, edge_index, edge_attr, batch)
x1 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1)
x = F.relu(self.conv2(x, edge_index))
x, edge_index, edge_attr, batch, _ = self.pool2(x, edge_index, edge_attr, batch)
x2 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1)
x = F.relu(self.conv3(x, edge_index))
x, edge_index, edge_attr, batch, _ = self.pool3(x, edge_index, edge_attr, batch)
x3 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1)
x = x1 + x2 + x3
x = F.relu(self.lin1(x))
x = F.dropout(x, p=self.dropout_rate, training=self.training)
features = F.relu(self.lin2(x))
out = self.lin3(features)
if self.act is not None:
out = self.act(out)
if isinstance(self.act, nn.Sigmoid):
out = out * self.output_range + self.output_shift
return features, out
############
# Path Model
############
model_urls = {
'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth',
'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth',
'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth',
'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth',
'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth',
}
class PathNet(nn.Module):
def __init__(self, features, path_dim=32, act=None, num_classes=1):
super(PathNet, self).__init__()
self.features = features
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 1024),
nn.ReLU(True),
nn.Dropout(0.25),
nn.Linear(1024, 1024),
nn.ReLU(True),
nn.Dropout(0.25),
nn.Linear(1024, path_dim),
nn.ReLU(True),
nn.Dropout(0.05)
)
self.linear = nn.Linear(path_dim, num_classes)
self.act = act
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False)
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False)
dfs_freeze(self.features)
def forward(self, **kwargs):
x = kwargs['x_path']
x = self.features(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
features = self.classifier(x)
hazard = self.linear(features)
if self.act is not None:
hazard = self.act(hazard)
if isinstance(self.act, nn.Sigmoid):
hazard = hazard * self.output_range + self.output_shift
return features, hazard
def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
cfgs = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
def get_vgg(arch='vgg19_bn', cfg='E', act=None, batch_norm=True, label_dim=1, pretrained=True, progress=True, **kwargs):
model = PathNet(make_layers(cfgs[cfg], batch_norm=batch_norm), act=act, num_classes=label_dim, **kwargs)
if pretrained:
pretrained_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
for key in list(pretrained_dict.keys()):
if 'classifier' in key: pretrained_dict.pop(key)
model.load_state_dict(pretrained_dict, strict=False)
print("Initializing Path Weights")
return model
##############################################################################
# Graph + Omic
##############################################################################
class GraphomicNet(nn.Module):
def __init__(self, opt, act, k):
super(GraphomicNet, self).__init__()
self.grph_net = GraphNet(grph_dim=opt.grph_dim, dropout_rate=opt.dropout_rate, use_edges=1, pooling_ratio=0.20, label_dim=opt.label_dim, init_max=False)
self.omic_net = MaxNet(input_dim=opt.input_size_omic, omic_dim=opt.omic_dim, dropout_rate=opt.dropout_rate, act=act, label_dim=opt.label_dim, init_max=False)
if k is not None:
pt_fname = '_%d.pt' % k
best_grph_ckpt = torch.load(os.path.join(opt.checkpoints_dir, opt.exp_name, 'graph', 'graph'+pt_fname), map_location=torch.device('cpu'))
best_omic_ckpt = torch.load(os.path.join(opt.checkpoints_dir, opt.exp_name, 'omic', 'omic'+pt_fname), map_location=torch.device('cpu'))
self.grph_net.load_state_dict(best_grph_ckpt['model_state_dict'])
self.omic_net.load_state_dict(best_omic_ckpt['model_state_dict'])
print("Loading Models:\n", os.path.join(opt.checkpoints_dir, opt.exp_name, 'graph', 'graph'+pt_fname), "\n", os.path.join(opt.checkpoints_dir, opt.exp_name, 'omic', 'omic'+pt_fname))
self.fusion = define_bifusion(fusion_type=opt.fusion_type, skip=opt.skip, use_bilinear=opt.use_bilinear, gate1=opt.grph_gate, gate2=opt.omic_gate, dim1=opt.grph_dim, dim2=opt.omic_dim, scale_dim1=opt.grph_scale, scale_dim2=opt.omic_scale, mmhid=opt.mmhid, dropout_rate=opt.dropout_rate)
self.classifier = nn.Sequential(nn.Linear(opt.mmhid, opt.label_dim))
self.act = act
dfs_freeze(self.grph_net)
dfs_freeze(self.omic_net)
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False)
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False)
def forward(self, **kwargs):
grph_vec, _ = self.grph_net(x_grph=kwargs['x_grph'])
omic_vec, _ = self.omic_net(x_omic=kwargs['x_omic'])
features = self.fusion(grph_vec, omic_vec)
hazard = self.classifier(features)
if self.act is not None:
hazard = self.act(hazard)
if isinstance(self.act, nn.Sigmoid):
hazard = hazard * self.output_range + self.output_shift
return features, hazard
def __hasattr__(self, name):
if '_parameters' in self.__dict__:
_parameters = self.__dict__['_parameters']
if name in _parameters:
return True
if '_buffers' in self.__dict__:
_buffers = self.__dict__['_buffers']
if name in _buffers:
return True
if '_modules' in self.__dict__:
modules = self.__dict__['_modules']
if name in modules:
return True
return False
##############################################################################
# Path + Omic
##############################################################################
class PathomicNet(nn.Module):
def __init__(self, opt, act, k):
super(PathomicNet, self).__init__()
self.omic_net = MaxNet(input_dim=opt.input_size_omic, omic_dim=opt.omic_dim, dropout_rate=opt.dropout_rate, act=act, label_dim=opt.label_dim, init_max=False)
if k is not None:
pt_fname = '_%d.pt' % k
best_omic_ckpt = torch.load(os.path.join(opt.checkpoints_dir, opt.exp_name, 'omic', 'omic'+pt_fname), map_location=torch.device('cpu'))
self.omic_net.load_state_dict(best_omic_ckpt['model_state_dict'])
print("Loading Models:\n", os.path.join(opt.checkpoints_dir, opt.exp_name, 'omic', 'omic'+pt_fname))
self.fusion = define_bifusion(fusion_type=opt.fusion_type, skip=opt.skip, use_bilinear=opt.use_bilinear, gate1=opt.path_gate, gate2=opt.omic_gate, dim1=opt.path_dim, dim2=opt.omic_dim, scale_dim1=opt.path_scale, scale_dim2=opt.omic_scale, mmhid=opt.mmhid, dropout_rate=opt.dropout_rate)
self.classifier = nn.Sequential(nn.Linear(opt.mmhid, opt.label_dim))
self.act = act
dfs_freeze(self.omic_net)
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False)
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False)
def forward(self, **kwargs):
path_vec = kwargs['x_path']
omic_vec, _ = self.omic_net(x_omic=kwargs['x_omic'])
features = self.fusion(path_vec, omic_vec)
hazard = self.classifier(features)
if self.act is not None:
hazard = self.act(hazard)
if isinstance(self.act, nn.Sigmoid):
hazard = hazard * self.output_range + self.output_shift
return features, hazard
def __hasattr__(self, name):
if '_parameters' in self.__dict__:
_parameters = self.__dict__['_parameters']
if name in _parameters:
return True
if '_buffers' in self.__dict__:
_buffers = self.__dict__['_buffers']
if name in _buffers:
return True
if '_modules' in self.__dict__:
modules = self.__dict__['_modules']
if name in modules:
return True
return False
#############################################################################
# Path + Graph + Omic
##############################################################################
class PathgraphomicNet(nn.Module):
def __init__(self, opt, act, k):
super(PathgraphomicNet, self).__init__()
self.grph_net = GraphNet(grph_dim=opt.grph_dim, dropout_rate=opt.dropout_rate, use_edges=1, pooling_ratio=0.20, label_dim=opt.label_dim, init_max=False)
self.omic_net = MaxNet(input_dim=opt.input_size_omic, omic_dim=opt.omic_dim, dropout_rate=opt.dropout_rate, act=act, label_dim=opt.label_dim, init_max=False)
if k is not None:
pt_fname = '_%d.pt' % k
best_grph_ckpt = torch.load(os.path.join(opt.checkpoints_dir, opt.exp_name, 'graph', 'graph'+pt_fname), map_location=torch.device('cpu'))
best_omic_ckpt = torch.load(os.path.join(opt.checkpoints_dir, opt.exp_name, 'omic', 'omic'+pt_fname), map_location=torch.device('cpu'))
self.grph_net.load_state_dict(best_grph_ckpt['model_state_dict'])
self.omic_net.load_state_dict(best_omic_ckpt['model_state_dict'])
print("Loading Models:\n", os.path.join(opt.checkpoints_dir, opt.exp_name, 'graph', 'graph'+pt_fname), "\n", os.path.join(opt.checkpoints_dir, opt.exp_name, 'omic', 'omic'+pt_fname))
self.fusion = define_trifusion(fusion_type=opt.fusion_type, skip=opt.skip, use_bilinear=opt.use_bilinear, gate1=opt.path_gate, gate2=opt.grph_gate, gate3=opt.omic_gate, dim1=opt.path_dim, dim2=opt.grph_dim, dim3=opt.omic_dim, scale_dim1=opt.path_scale, scale_dim2=opt.grph_scale, scale_dim3=opt.omic_scale, mmhid=opt.mmhid, dropout_rate=opt.dropout_rate)
self.classifier = nn.Sequential(nn.Linear(opt.mmhid, opt.label_dim))
self.act = act
dfs_freeze(self.grph_net)
dfs_freeze(self.omic_net)
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False)
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False)
def forward(self, **kwargs):
path_vec = kwargs['x_path']
grph_vec, _ = self.grph_net(x_grph=kwargs['x_grph'])
omic_vec, _ = self.omic_net(x_omic=kwargs['x_omic'])
features = self.fusion(path_vec, grph_vec, omic_vec)
hazard = self.classifier(features)
if self.act is not None:
hazard = self.act(hazard)
if isinstance(self.act, nn.Sigmoid):
hazard = hazard * self.output_range + self.output_shift
return features, hazard
def __hasattr__(self, name):
if '_parameters' in self.__dict__:
_parameters = self.__dict__['_parameters']
if name in _parameters:
return True
if '_buffers' in self.__dict__:
_buffers = self.__dict__['_buffers']
if name in _buffers:
return True
if '_modules' in self.__dict__:
modules = self.__dict__['_modules']
if name in modules:
return True
return False
##############################################################################
# Ensembling Effects
##############################################################################
class PathgraphNet(nn.Module):
def __init__(self, opt, act, k):
super(PathgraphNet, self).__init__()
self.grph_net = GraphNet(grph_dim=opt.grph_dim, dropout_rate=opt.dropout_rate, use_edges=1, pooling_ratio=0.20, label_dim=opt.label_dim, init_max=False)
if k is not None:
pt_fname = '_%d.pt' % k
best_grph_ckpt = torch.load(os.path.join(opt.checkpoints_dir, opt.exp_name, 'graph', 'graph'+pt_fname), map_location=torch.device('cpu'))
self.grph_net.load_state_dict(best_grph_ckpt['model_state_dict'])
print("Loading Models:\n", os.path.join(opt.checkpoints_dir, opt.exp_name, 'graph', 'graph'+pt_fname))
self.fusion = define_bifusion(fusion_type=opt.fusion_type, skip=opt.skip, use_bilinear=opt.use_bilinear, gate1=opt.path_gate, gate2=opt.grph_gate, dim1=opt.path_dim, dim2=opt.grph_dim, scale_dim1=opt.path_scale, scale_dim2=opt.grph_scale, mmhid=opt.mmhid, dropout_rate=opt.dropout_rate)
self.classifier = nn.Sequential(nn.Linear(opt.mmhid, opt.label_dim))
self.act = act
dfs_freeze(self.grph_net)
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False)
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False)
def forward(self, **kwargs):
path_vec = kwargs['x_path']
grph_vec, _ = self.grph_net(x_grph=kwargs['x_grph'])
features = self.fusion(path_vec, grph_vec)
hazard = self.classifier(features)
if self.act is not None:
hazard = self.act(hazard)
if isinstance(self.act, nn.Sigmoid):
hazard = hazard * self.output_range + self.output_shift
return features, hazard
def __hasattr__(self, name):
if '_parameters' in self.__dict__:
_parameters = self.__dict__['_parameters']
if name in _parameters:
return True
if '_buffers' in self.__dict__:
_buffers = self.__dict__['_buffers']
if name in _buffers:
return True
if '_modules' in self.__dict__:
modules = self.__dict__['_modules']
if name in modules:
return True
return False
class PathpathNet(nn.Module):
def __init__(self, opt, act, k):
super(PathpathNet, self).__init__()
self.fusion = define_bifusion(fusion_type=opt.fusion_type, skip=opt.skip, use_bilinear=opt.use_bilinear, gate1=opt.path_gate, gate2=1-opt.path_gate if opt.path_gate else 0,
dim1=opt.path_dim, dim2=opt.path_dim, scale_dim1=opt.path_scale, scale_dim2=opt.path_scale, mmhid=opt.mmhid, dropout_rate=opt.dropout_rate)
self.classifier = nn.Sequential(nn.Linear(opt.mmhid, opt.label_dim))
self.act = act
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False)
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False)
def forward(self, **kwargs):
path_vec = kwargs['x_path']
features = self.fusion(path_vec, path_vec)
hazard = self.classifier(features)
if self.act is not None:
hazard = self.act(hazard)
if isinstance(self.act, nn.Sigmoid):
hazard = hazard * self.output_range + self.output_shift
return features, hazard
def __hasattr__(self, name):
if '_parameters' in self.__dict__:
_parameters = self.__dict__['_parameters']
if name in _parameters:
return True
if '_buffers' in self.__dict__:
_buffers = self.__dict__['_buffers']
if name in _buffers:
return True
if '_modules' in self.__dict__:
modules = self.__dict__['_modules']
if name in modules:
return True
return False
class GraphgraphNet(nn.Module):
def __init__(self, opt, act, k):
super(GraphgraphNet, self).__init__()
self.grph_net = GraphNet(grph_dim=opt.grph_dim, dropout_rate=opt.dropout_rate, use_edges=1, pooling_ratio=0.20, label_dim=opt.label_dim, init_max=False)
if k is not None:
pt_fname = '_%d.pt' % k
best_grph_ckpt = torch.load(os.path.join(opt.checkpoints_dir, opt.exp_name, 'graph', 'graph'+pt_fname), map_location=torch.device('cpu'))
self.grph_net.load_state_dict(best_grph_ckpt['model_state_dict'])
print("Loading Models:\n", os.path.join(opt.checkpoints_dir, opt.exp_name, 'graph', 'graph'+pt_fname))
self.fusion = define_bifusion(fusion_type=opt.fusion_type, skip=opt.skip, use_bilinear=opt.use_bilinear, gate1=opt.grph_gate, gate2=1-opt.grph_gate if opt.grph_gate else 0,
dim1=opt.grph_dim, dim2=opt.grph_dim, scale_dim1=opt.grph_scale, scale_dim2=opt.grph_scale, mmhid=opt.mmhid, dropout_rate=opt.dropout_rate)
self.classifier = nn.Sequential(nn.Linear(opt.mmhid, opt.label_dim))
self.act = act
dfs_freeze(self.grph_net)
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False)
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False)
def forward(self, **kwargs):
grph_vec, _ = self.grph_net(x_grph=kwargs['x_grph'])
features = self.fusion(grph_vec, grph_vec)
hazard = self.classifier(features)
if self.act is not None:
hazard = self.act(hazard)
if isinstance(self.act, nn.Sigmoid):
hazard = hazard * self.output_range + self.output_shift
return features, hazard
def __hasattr__(self, name):
if '_parameters' in self.__dict__:
_parameters = self.__dict__['_parameters']
if name in _parameters:
return True
if '_buffers' in self.__dict__:
_buffers = self.__dict__['_buffers']
if name in _buffers:
return True
if '_modules' in self.__dict__:
modules = self.__dict__['_modules']
if name in modules:
return True
return False
class OmicomicNet(nn.Module):
def __init__(self, opt, act, k):
super(OmicomicNet, self).__init__()
self.omic_net = MaxNet(input_dim=opt.input_size_omic, omic_dim=opt.omic_dim, dropout_rate=opt.dropout_rate, act=act, label_dim=opt.label_dim, init_max=False)
if k is not None:
pt_fname = '_%d.pt' % k
best_omic_ckpt = torch.load(os.path.join(opt.checkpoints_dir, opt.exp_name, 'omic', 'omic'+pt_fname), map_location=torch.device('cpu'))
self.omic_net.load_state_dict(best_omic_ckpt['model_state_dict'])
print("Loading Models:\n", os.path.join(opt.checkpoints_dir, opt.exp_name, 'omic', 'omic'+pt_fname))
self.fusion = define_bifusion(fusion_type=opt.fusion_type, skip=opt.skip, use_bilinear=opt.use_bilinear, gate1=opt.omic_gate, gate2=1-opt.omic_gate if opt.omic_gate else 0,
dim1=opt.omic_dim, dim2=opt.omic_dim, scale_dim1=opt.omic_scale, scale_dim2=opt.omic_scale, mmhid=opt.mmhid, dropout_rate=opt.dropout_rate)
self.classifier = nn.Sequential(nn.Linear(opt.mmhid, opt.label_dim))
self.act = act
dfs_freeze(self.omic_net)
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False)
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False)
def forward(self, **kwargs):
omic_vec, _ = self.omic_net(x_omic=kwargs['x_omic'])
features = self.fusion(omic_vec, omic_vec)
hazard = self.classifier(features)
if self.act is not None:
hazard = self.act(hazard)
if isinstance(self.act, nn.Sigmoid):
hazard = hazard * self.output_range + self.output_shift
return features, hazard
def __hasattr__(self, name):
if '_parameters' in self.__dict__:
_parameters = self.__dict__['_parameters']
if name in _parameters:
return True
if '_buffers' in self.__dict__:
_buffers = self.__dict__['_buffers']
if name in _buffers:
return True
if '_modules' in self.__dict__:
modules = self.__dict__['_modules']
if name in modules:
return True
return False