[f2cb69]: / core / utils_data.py

Download this file

165 lines (139 with data), 9.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import pandas as pd
import numpy as np
################
# Data Utils
################
def addHistomolecularSubtype(data):
"""
Molecular Subtype: IDHwt == 0, IDHmut-non-codel == 1, IDHmut-codel == 2
Histology Subtype: astrocytoma == 0, oligoastrocytoma == 1, oligodendroglioma == 2, glioblastoma == 3
"""
subtyped_data = data.copy()
subtyped_data.insert(loc=0, column='Histomolecular subtype', value=np.ones(len(data)))
idhwt_ATC = np.logical_and(data['Molecular subtype'] == 0, np.logical_or(data['Histology'] == 0, data['Histology'] == 3))
subtyped_data.loc[idhwt_ATC, 'Histomolecular subtype'] = 'idhwt_ATC'
idhmut_ATC = np.logical_and(data['Molecular subtype'] == 1, np.logical_or(data['Histology'] == 0, data['Histology'] == 3))
subtyped_data.loc[idhmut_ATC, 'Histomolecular subtype'] = 'idhmut_ATC'
ODG = np.logical_and(data['Molecular subtype'] == 2, data['Histology'] == 2)
subtyped_data.loc[ODG, 'Histomolecular subtype'] = 'ODG'
return subtyped_data
def changeHistomolecularSubtype(data):
"""
Molecular Subtype: IDHwt == 0, IDHmut-non-codel == 1, IDHmut-codel == 2
Histology Subtype: astrocytoma == 0, oligoastrocytoma == 1, oligodendroglioma == 2, glioblastoma == 3
"""
data = data.drop(['Histomolecular subtype'], axis=1)
subtyped_data = data.copy()
subtyped_data.insert(loc=0, column='Histomolecular subtype', value=np.ones(len(data)))
idhwt_ATC = np.logical_and(data['Molecular subtype'] == 0, np.logical_or(data['Histology'] == 0, data['Histology'] == 3))
subtyped_data.loc[idhwt_ATC, 'Histomolecular subtype'] = 'idhwt_ATC'
idhmut_ATC = np.logical_and(data['Molecular subtype'] == 1, np.logical_or(data['Histology'] == 0, data['Histology'] == 3))
subtyped_data.loc[idhmut_ATC, 'Histomolecular subtype'] = 'idhmut_ATC'
ODG = np.logical_and(data['Molecular subtype'] == 2, data['Histology'] == 2)
subtyped_data.loc[ODG, 'Histomolecular subtype'] = 'ODG'
return subtyped_data
def getCleanGBMLGG(dataroot='./data/TCGA_GBMLGG/', ignore_missing_moltype=False, ignore_missing_histype=False, use_rnaseq=False, use_ag=False):
### 1. Joining all_datasets.csv with grade data. Looks at columns with misisng samples
metadata = ['Histology', 'Grade', 'Molecular subtype', 'TCGA ID', 'censored', 'Survival months']
all_dataset = pd.read_csv(os.path.join(dataroot, 'all_dataset.csv')).drop('indexes', axis=1)
all_dataset.index = all_dataset['TCGA ID']
all_grade = pd.read_csv(os.path.join(dataroot, 'grade_data.csv'))
all_grade['Histology'] = all_grade['Histology'].str.replace('astrocytoma (glioblastoma)', 'glioblastoma', regex=False)
all_grade.index = all_grade['TCGA ID']
all_grade = all_grade.rename(columns={'Age at diagnosis': 'Age'})
all_grade['Gender'] = all_grade['Gender'].replace({'male':0, 'female': 1})
assert pd.Series(all_dataset.index).equals(pd.Series(sorted(all_grade.index)))
all_dataset = all_dataset.join(all_grade[['Histology', 'Grade', 'Molecular subtype', 'Age', 'Gender']], how='inner')
cols = all_dataset.columns.tolist()
cols = cols[-3:] + cols[:-3]
all_dataset = all_dataset[cols]
if use_rnaseq:
gbm = pd.read_csv(os.path.join(dataroot, 'mRNA_Expression_z-Scores_RNA_Seq_RSEM.txt'), sep='\t', skiprows=1, index_col=0)
lgg = pd.read_csv(os.path.join(dataroot, 'mRNA_Expression_Zscores_RSEM.txt'), sep='\t', skiprows=1, index_col=0)
gbm = gbm[gbm.columns[~gbm.isnull().all()]]
lgg = lgg[lgg.columns[~lgg.isnull().all()]]
glioma_RNAseq = gbm.join(lgg, how='inner').T
glioma_RNAseq = glioma_RNAseq.dropna(axis=1)
glioma_RNAseq.columns = [gene+'_rnaseq' for gene in glioma_RNAseq.columns]
glioma_RNAseq.index = [patname[:12] for patname in glioma_RNAseq.index]
glioma_RNAseq = glioma_RNAseq.iloc[~glioma_RNAseq.index.duplicated()]
glioma_RNAseq.index.name = 'TCGA ID'
all_dataset = all_dataset.join(glioma_RNAseq, how='inner')
pat_missing_moltype = all_dataset[all_dataset['Molecular subtype'].isna()].index
pat_missing_idh = all_dataset[all_dataset['idh mutation'].isna()].index
pat_missing_1p19q = all_dataset[all_dataset['codeletion'].isna()].index
print("# Missing Molecular Subtype:", len(pat_missing_moltype))
print("# Missing IDH Mutation:", len(pat_missing_idh))
print("# Missing 1p19q Codeletion:", len(pat_missing_1p19q))
assert pat_missing_moltype.equals(pat_missing_idh)
assert pat_missing_moltype.equals(pat_missing_1p19q)
pat_missing_grade = all_dataset[all_dataset['Grade'].isna()].index
pat_missing_histype = all_dataset[all_dataset['Histology'].isna()].index
print("# Missing Histological Subtype:", len(pat_missing_histype))
print("# Missing Grade:", len(pat_missing_grade))
assert pat_missing_histype.equals(pat_missing_grade)
### 2. Impute Missing Genomic Data: Removes patients with missing molecular subtype / idh mutation / 1p19q. Else imputes with median value of each column. Fills missing Molecular subtype with "Missing"
if ignore_missing_moltype:
all_dataset = all_dataset[all_dataset['Molecular subtype'].isna() == False]
for col in all_dataset.drop(metadata, axis=1).columns:
all_dataset['Molecular subtype'] = all_dataset['Molecular subtype'].fillna('Missing')
all_dataset[col] = all_dataset[col].fillna(all_dataset[col].median())
### 3. Impute Missing Histological Data: Removes patients with missing histological subtype / grade. Else imputes with "missing" / grade -1
if ignore_missing_histype:
all_dataset = all_dataset[all_dataset['Histology'].isna() == False]
else:
all_dataset['Grade'] = all_dataset['Grade'].fillna(1)
all_dataset['Histology'] = all_dataset['Histology'].fillna('Missing')
all_dataset['Grade'] = all_dataset['Grade'] - 2
### 4. Adds Histomolecular subtype
ms2int = {'Missing':-1, 'IDHwt':0, 'IDHmut-non-codel':1, 'IDHmut-codel':2}
all_dataset[['Molecular subtype']] = all_dataset[['Molecular subtype']].applymap(lambda s: ms2int.get(s) if s in ms2int else s)
hs2int = {'Missing':-1, 'astrocytoma':0, 'oligoastrocytoma':1, 'oligodendroglioma':2, 'glioblastoma':3}
all_dataset[['Histology']] = all_dataset[['Histology']].applymap(lambda s: hs2int.get(s) if s in hs2int else s)
all_dataset = addHistomolecularSubtype(all_dataset)
metadata.extend(['Histomolecular subtype'])
if use_ag == 0:
metadata.extend(['Age', 'Gender'])
all_dataset['censored'] = 1 - all_dataset['censored']
return metadata, all_dataset
def getCleanKIRC(dataroot='./', rnaseq_cutoff='all', cnv_cutoff=7.0, mut_cutoff=5.0):
### Clinical variables
clinical = pd.read_table(os.path.join(dataroot, './kirc_tcga_pan_can_atlas_2018_clinical_data.tsv'), index_col=2)
clinical.index.name = None
clinical['censored'] = clinical['Overall Survival Status']
clinical['censored'] = clinical['censored'].replace('LIVING', 1)
clinical['censored'] = clinical['censored'].replace('DECEASED', 0)
clinical['censored'] = 1-clinical['censored']
### Select RNAseq Features
rnaseq = pd.read_table(os.path.join(dataroot, 'data_RNA_Seq_v2_mRNA_median_Zscores.txt'), index_col=0)
rnaseq = rnaseq[rnaseq.index.notnull()]
rnaseq = rnaseq.drop(['Entrez_Gene_Id'], axis=1)
rnaseq.index.name = None
rnaseqDEGs = pd.read_csv(os.path.join(dataroot, 'dataDEGs_kirc.csv'), index_col=0)
rnaseqDEGs = rnaseqDEGs.sort_values(['PValue', 'logFC'], ascending=False)
rnaseq_cutoff = rnaseqDEGs.shape[0] if isinstance(rnaseq_cutoff, str) else rnaseq_cutoff
rnaseq = rnaseq.loc[rnaseq.index.intersection(rnaseqDEGs.index)].T
rnaseq.columns = [g+"_rnaseq" for g in rnaseq.columns]
### Select CNV Features
cnv = pd.read_table(os.path.join(dataroot, 'data_CNA.txt'), index_col=0)
cnv = cnv[cnv.index.notnull()]
cnv = cnv.drop(['Entrez_Gene_Id'], axis=1)
cnv.index.name = None
cnv_freq = pd.read_table(os.path.join(dataroot, 'CNA_Genes.txt'), index_col=0)
cnv_freq = cnv_freq[['CNA', 'Profiled Samples', 'Freq']]
cnv_freq['Freq'] = cnv_freq['Freq'].str.rstrip('%').astype(float)
cnv_cutoff = cnv_freq.shape[0] if isinstance(cnv_cutoff, str) else cnv_cutoff
cnv_freq = cnv_freq[cnv_freq['Freq'] >= cnv_cutoff]
cnv = cnv.loc[cnv.index.intersection(cnv_freq.index)].T
cnv.columns = [g+"_cnv" for g in cnv.columns]
mut = clinical[['Patient ID']].copy()
for tsv in os.listdir(os.path.join(dataroot, 'muts')):
if tsv.endswith('.tsv'):
mut_samples = pd.read_table(os.path.join(dataroot, 'muts', tsv))['Patient ID']
mut_gene = tsv.split('_')[2].rstrip('.tsv')+'_mut'
mut[mut_gene] = 0
mut.loc[mut.index[:-3].isin(mut_samples), mut_gene] = 1
mut = mut.drop(['Patient ID'], axis=1)
omic_features = rnaseq.join(cnv, how='inner').join(mut, how='inner')
return omic_features