--- a +++ b/options.py @@ -0,0 +1,137 @@ +import argparse +import os + +import torch + +### Parser + +def parse_args(): + parser = argparse.ArgumentParser() + parser.add_argument('--dataroot', default='./data/TCGA_GBMLGG', help="datasets") + parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints/TCGA_GBMLGG', help='models are saved here') + parser.add_argument('--exp_name', type=str, default='exp_name', help='name of the project. It decides where to store samples and models') + parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') + parser.add_argument('--mode', type=str, default='omic', help='mode') + parser.add_argument('--model_name', type=str, default='omic', help='mode') + parser.add_argument('--use_vgg_features', type=int, default=0, help='Use pretrained embeddings') + parser.add_argument('--use_rnaseq', type=int, default=0, help='Use RNAseq data.') + + parser.add_argument('--task', type=str, default='surv', help='surv | grad') + parser.add_argument('--useRNA', type=int, default=0) # Doesn't work at the moment...:( + parser.add_argument('--useSN', type=int, default=1) + parser.add_argument('--act_type', type=str, default='Sigmoid', help='activation function') + parser.add_argument('--input_size_omic', type=int, default=80, help="input_size for omic vector") + parser.add_argument('--input_size_path', type=int, default=512, help="input_size for path images") + parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.') + parser.add_argument('--save_at', type=int, default=20, help="adsfasdf") + parser.add_argument('--label_dim', type=int, default=1, help='size of output') + parser.add_argument('--measure', default=1, type=int, help='disables measure while training (make program faster)') + parser.add_argument('--verbose', default=1, type=int) + parser.add_argument('--print_every', default=0, type=int) + + parser.add_argument('--optimizer_type', type=str, default='adam') + parser.add_argument('--beta1', type=float, default=0.9, help='0.9, 0.5 | 0.25 | 0') + parser.add_argument('--beta2', type=float, default=0.999, help='0.9, 0.5 | 0.25 | 0') + parser.add_argument('--lr_policy', default='linear', type=str, help='5e-4 for Adam | 1e-3 for AdaBound') + parser.add_argument('--finetune', default=1, type=int, help='5e-4 for Adam | 1e-3 for AdaBound') + parser.add_argument('--final_lr', default=0.1, type=float, help='Used for AdaBound') + parser.add_argument('--reg_type', default='omic', type=str, help="regularization type") + parser.add_argument('--niter', type=int, default=0, help='# of iter at starting learning rate') + parser.add_argument('--niter_decay', type=int, default=25, help='# of iter to linearly decay learning rate to zero') + parser.add_argument('--epoch_count', type=int, default=1, help='start of epoch') + parser.add_argument('--batch_size', type=int, default=32, help="Number of batches to train/test for. Default: 256") + + parser.add_argument('--lambda_cox', type=float, default=1) + parser.add_argument('--lambda_reg', type=float, default=3e-4) + parser.add_argument('--lambda_nll', type=float, default=1) + + + parser.add_argument('--fusion_type', type=str, default="pofusion", help='concat | pofusion') + parser.add_argument('--skip', type=int, default=0) + parser.add_argument('--use_bilinear', type=int, default=1) + parser.add_argument('--path_gate', type=int, default=1) + parser.add_argument('--grph_gate', type=int, default=1) + parser.add_argument('--omic_gate', type=int, default=1) + parser.add_argument('--path_dim', type=int, default=32) + parser.add_argument('--grph_dim', type=int, default=32) + parser.add_argument('--omic_dim', type=int, default=32) + parser.add_argument('--path_scale', type=int, default=1) + parser.add_argument('--grph_scale', type=int, default=1) + parser.add_argument('--omic_scale', type=int, default=1) + parser.add_argument('--mmhid', type=int, default=64) + + parser.add_argument('--init_type', type=str, default='none', help='network initialization [normal | xavier | kaiming | orthogonal | max]. Max seems to work well') + parser.add_argument('--dropout_rate', default=0.25, type=float, help='0 - 0.25. Increasing dropout_rate helps overfitting. Some people have gone as high as 0.5. You can try adding more regularization') + parser.add_argument('--use_edges', default=1, type=float, help='Using edge_attr') + parser.add_argument('--pooling_ratio', default=0.2, type=float, help='pooling ratio for SAGPOOl') + parser.add_argument('--lr', default=2e-3, type=float, help='5e-4 for Adam | 1e-3 for AdaBound') + parser.add_argument('--weight_decay', default=4e-4, type=float, help='Used for Adam. L2 Regularization on weights. I normally turn this off if I am using L1. You should try') + parser.add_argument('--GNN', default='GCN', type=str, help='GCN | GAT | SAG. graph conv mode for pooling') + parser.add_argument('--patience', default=0.005, type=float) + opt = parser.parse_known_args()[0] + print_options(parser, opt) + opt = parse_gpuids(opt) + return opt + + +def print_options(parser, opt): + """Print and save options + + It will print both current options and default values(if different). + It will save options into a text file / [checkpoints_dir] / opt.txt + """ + message = '' + message += '----------------- Options ---------------\n' + for k, v in sorted(vars(opt).items()): + comment = '' + default = parser.get_default(k) + if v != default: + comment = '\t[default: %s]' % str(default) + message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment) + message += '----------------- End -------------------' + print(message) + + # save to the disk + expr_dir = os.path.join(opt.checkpoints_dir, opt.exp_name, opt.model_name) + mkdirs(expr_dir) + file_name = os.path.join(expr_dir, '{}_opt.txt'.format('train')) + with open(file_name, 'wt') as opt_file: + opt_file.write(message) + opt_file.write('\n') + + +def parse_gpuids(opt): + # set gpu ids + str_ids = opt.gpu_ids.split(',') + opt.gpu_ids = [] + for str_id in str_ids: + id = int(str_id) + if id >= 0: + opt.gpu_ids.append(id) + if len(opt.gpu_ids) > 0: + torch.cuda.set_device(opt.gpu_ids[0]) + + return opt + + +def mkdirs(paths): + """create empty directories if they don't exist + + Parameters: + paths (str list) -- a list of directory paths + """ + if isinstance(paths, list) and not isinstance(paths, str): + for path in paths: + mkdir(path) + else: + mkdir(paths) + + +def mkdir(path): + """create a single empty directory if it didn't exist + + Parameters: + path (str) -- a single directory path + """ + if not os.path.exists(path): + os.makedirs(path)