|
a |
|
b/networks.py |
|
|
1 |
# Base / Native |
|
|
2 |
import csv |
|
|
3 |
from collections import Counter |
|
|
4 |
import copy |
|
|
5 |
import json |
|
|
6 |
import functools |
|
|
7 |
import gc |
|
|
8 |
import logging |
|
|
9 |
import math |
|
|
10 |
import os |
|
|
11 |
import pdb |
|
|
12 |
import pickle |
|
|
13 |
import random |
|
|
14 |
import sys |
|
|
15 |
import tables |
|
|
16 |
import time |
|
|
17 |
from tqdm import tqdm |
|
|
18 |
|
|
|
19 |
# Numerical / Array |
|
|
20 |
import numpy as np |
|
|
21 |
|
|
|
22 |
# Torch |
|
|
23 |
import torch |
|
|
24 |
import torch.nn as nn |
|
|
25 |
import torch.nn.functional as F |
|
|
26 |
import torch.optim as optim |
|
|
27 |
from torch import Tensor |
|
|
28 |
from torch.autograd import Variable |
|
|
29 |
from torch.nn import init, Parameter |
|
|
30 |
from torch.utils.data import DataLoader |
|
|
31 |
from torch.utils.model_zoo import load_url as load_state_dict_from_url |
|
|
32 |
from torchvision import datasets, transforms |
|
|
33 |
import torch.optim.lr_scheduler as lr_scheduler |
|
|
34 |
from torch_geometric.nn import GCNConv, SAGEConv, GraphConv, GatedGraphConv, GATConv |
|
|
35 |
from torch_geometric.nn import GraphConv, TopKPooling, SAGPooling |
|
|
36 |
from torch_geometric.nn import global_mean_pool as gap, global_max_pool as gmp |
|
|
37 |
from torch_geometric.transforms.normalize_features import NormalizeFeatures |
|
|
38 |
|
|
|
39 |
# Env |
|
|
40 |
from fusion import * |
|
|
41 |
from options import parse_args |
|
|
42 |
from utils import * |
|
|
43 |
|
|
|
44 |
|
|
|
45 |
################ |
|
|
46 |
# Network Utils |
|
|
47 |
################ |
|
|
48 |
def define_net(opt, k): |
|
|
49 |
net = None |
|
|
50 |
act = define_act_layer(act_type=opt.act_type) |
|
|
51 |
init_max = True if opt.init_type == "max" else False |
|
|
52 |
|
|
|
53 |
if opt.mode == "path": |
|
|
54 |
net = get_vgg(path_dim=opt.path_dim, act=act, label_dim=opt.label_dim) |
|
|
55 |
elif opt.mode == "graph": |
|
|
56 |
net = GraphNet(grph_dim=opt.grph_dim, dropout_rate=opt.dropout_rate, GNN=opt.GNN, use_edges=opt.use_edges, pooling_ratio=opt.pooling_ratio, act=act, label_dim=opt.label_dim, init_max=init_max) |
|
|
57 |
elif opt.mode == "omic": |
|
|
58 |
net = MaxNet(input_dim=opt.input_size_omic, omic_dim=opt.omic_dim, dropout_rate=opt.dropout_rate, act=act, label_dim=opt.label_dim, init_max=init_max) |
|
|
59 |
elif opt.mode == "graphomic": |
|
|
60 |
net = GraphomicNet(opt=opt, act=act, k=k) |
|
|
61 |
elif opt.mode == "pathomic": |
|
|
62 |
net = PathomicNet(opt=opt, act=act, k=k) |
|
|
63 |
elif opt.mode == "pathgraphomic": |
|
|
64 |
net = PathgraphomicNet(opt=opt, act=act, k=k) |
|
|
65 |
elif opt.mode == "pathpath": |
|
|
66 |
net = PathpathNet(opt=opt, act=act, k=k) |
|
|
67 |
elif opt.mode == "graphgraph": |
|
|
68 |
net = GraphgraphNet(opt=opt, act=act, k=k) |
|
|
69 |
elif opt.mode == "omicomic": |
|
|
70 |
net = OmicomicNet(opt=opt, act=act, k=k) |
|
|
71 |
else: |
|
|
72 |
raise NotImplementedError('model [%s] is not implemented' % opt.model) |
|
|
73 |
return init_net(net, opt.init_type, opt.init_gain, opt.gpu_ids) |
|
|
74 |
|
|
|
75 |
|
|
|
76 |
def define_optimizer(opt, model): |
|
|
77 |
optimizer = None |
|
|
78 |
if opt.optimizer_type == 'adabound': |
|
|
79 |
optimizer = adabound.AdaBound(model.parameters(), lr=opt.lr, final_lr=opt.final_lr) |
|
|
80 |
elif opt.optimizer_type == 'adam': |
|
|
81 |
optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2), weight_decay=opt.weight_decay) |
|
|
82 |
elif opt.optimizer_type == 'adagrad': |
|
|
83 |
optimizer = torch.optim.Adagrad(model.parameters(), lr=opt.lr, weight_decay=opt.weight_decay, initial_accumulator_value=0.1) |
|
|
84 |
else: |
|
|
85 |
raise NotImplementedError('initialization method [%s] is not implemented' % opt.optimizer) |
|
|
86 |
return optimizer |
|
|
87 |
|
|
|
88 |
|
|
|
89 |
def define_reg(opt, model): |
|
|
90 |
loss_reg = None |
|
|
91 |
|
|
|
92 |
if opt.reg_type == 'none': |
|
|
93 |
loss_reg = 0 |
|
|
94 |
elif opt.reg_type == 'path': |
|
|
95 |
loss_reg = regularize_path_weights(model=model) |
|
|
96 |
elif opt.reg_type == 'mm': |
|
|
97 |
loss_reg = regularize_MM_weights(model=model) |
|
|
98 |
elif opt.reg_type == 'all': |
|
|
99 |
loss_reg = regularize_weights(model=model) |
|
|
100 |
elif opt.reg_type == 'omic': |
|
|
101 |
loss_reg = regularize_MM_omic(model=model) |
|
|
102 |
else: |
|
|
103 |
raise NotImplementedError('reg method [%s] is not implemented' % opt.reg_type) |
|
|
104 |
return loss_reg |
|
|
105 |
|
|
|
106 |
|
|
|
107 |
def define_scheduler(opt, optimizer): |
|
|
108 |
if opt.lr_policy == 'linear': |
|
|
109 |
def lambda_rule(epoch): |
|
|
110 |
lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.niter) / float(opt.niter_decay + 1) |
|
|
111 |
return lr_l |
|
|
112 |
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) |
|
|
113 |
elif opt.lr_policy == 'exp': |
|
|
114 |
scheduler = lr_scheduler.ExponentialLR(optimizer, 0.1, last_epoch=-1) |
|
|
115 |
elif opt.lr_policy == 'step': |
|
|
116 |
scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1) |
|
|
117 |
elif opt.lr_policy == 'plateau': |
|
|
118 |
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) |
|
|
119 |
elif opt.lr_policy == 'cosine': |
|
|
120 |
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.niter, eta_min=0) |
|
|
121 |
else: |
|
|
122 |
return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) |
|
|
123 |
return scheduler |
|
|
124 |
|
|
|
125 |
|
|
|
126 |
def define_act_layer(act_type='Tanh'): |
|
|
127 |
if act_type == 'Tanh': |
|
|
128 |
act_layer = nn.Tanh() |
|
|
129 |
elif act_type == 'ReLU': |
|
|
130 |
act_layer = nn.ReLU() |
|
|
131 |
elif act_type == 'Sigmoid': |
|
|
132 |
act_layer = nn.Sigmoid() |
|
|
133 |
elif act_type == 'LSM': |
|
|
134 |
act_layer = nn.LogSoftmax(dim=1) |
|
|
135 |
elif act_type == "none": |
|
|
136 |
act_layer = None |
|
|
137 |
else: |
|
|
138 |
raise NotImplementedError('activation layer [%s] is not found' % act_type) |
|
|
139 |
return act_layer |
|
|
140 |
|
|
|
141 |
|
|
|
142 |
def define_bifusion(fusion_type, skip=1, use_bilinear=1, gate1=1, gate2=1, dim1=32, dim2=32, scale_dim1=1, scale_dim2=1, mmhid=64, dropout_rate=0.25): |
|
|
143 |
fusion = None |
|
|
144 |
if fusion_type == 'pofusion': |
|
|
145 |
fusion = BilinearFusion(skip=skip, use_bilinear=use_bilinear, gate1=gate1, gate2=gate2, dim1=dim1, dim2=dim2, scale_dim1=scale_dim1, scale_dim2=scale_dim2, mmhid=mmhid, dropout_rate=dropout_rate) |
|
|
146 |
else: |
|
|
147 |
raise NotImplementedError('fusion type [%s] is not found' % fusion_type) |
|
|
148 |
return fusion |
|
|
149 |
|
|
|
150 |
|
|
|
151 |
def define_trifusion(fusion_type, skip=1, use_bilinear=1, gate1=1, gate2=1, gate3=3, dim1=32, dim2=32, dim3=32, scale_dim1=1, scale_dim2=1, scale_dim3=1, mmhid=96, dropout_rate=0.25): |
|
|
152 |
fusion = None |
|
|
153 |
if fusion_type == 'pofusion_A': |
|
|
154 |
fusion = TrilinearFusion_A(skip=skip, use_bilinear=use_bilinear, gate1=gate1, gate2=gate2, gate3=gate3, dim1=dim1, dim2=dim2, dim3=dim3, scale_dim1=scale_dim1, scale_dim2=scale_dim2, scale_dim3=scale_dim3, mmhid=mmhid, dropout_rate=dropout_rate) |
|
|
155 |
elif fusion_type == 'pofusion_B': |
|
|
156 |
fusion = TrilinearFusion_B(skip=skip, use_bilinear=use_bilinear, gate1=gate1, gate2=gate2, gate3=gate3, dim1=dim1, dim2=dim2, dim3=dim3, scale_dim1=scale_dim1, scale_dim2=scale_dim2, scale_dim3=scale_dim3, mmhid=mmhid, dropout_rate=dropout_rate) |
|
|
157 |
else: |
|
|
158 |
raise NotImplementedError('fusion type [%s] is not found' % fusion_type) |
|
|
159 |
return fusion |
|
|
160 |
|
|
|
161 |
|
|
|
162 |
|
|
|
163 |
############ |
|
|
164 |
# Omic Model |
|
|
165 |
############ |
|
|
166 |
class MaxNet(nn.Module): |
|
|
167 |
def __init__(self, input_dim=80, omic_dim=32, dropout_rate=0.25, act=None, label_dim=1, init_max=True): |
|
|
168 |
super(MaxNet, self).__init__() |
|
|
169 |
hidden = [64, 48, 32, 32] |
|
|
170 |
self.act = act |
|
|
171 |
|
|
|
172 |
encoder1 = nn.Sequential( |
|
|
173 |
nn.Linear(input_dim, hidden[0]), |
|
|
174 |
nn.ELU(), |
|
|
175 |
nn.AlphaDropout(p=dropout_rate, inplace=False)) |
|
|
176 |
|
|
|
177 |
encoder2 = nn.Sequential( |
|
|
178 |
nn.Linear(hidden[0], hidden[1]), |
|
|
179 |
nn.ELU(), |
|
|
180 |
nn.AlphaDropout(p=dropout_rate, inplace=False)) |
|
|
181 |
|
|
|
182 |
encoder3 = nn.Sequential( |
|
|
183 |
nn.Linear(hidden[1], hidden[2]), |
|
|
184 |
nn.ELU(), |
|
|
185 |
nn.AlphaDropout(p=dropout_rate, inplace=False)) |
|
|
186 |
|
|
|
187 |
encoder4 = nn.Sequential( |
|
|
188 |
nn.Linear(hidden[2], omic_dim), |
|
|
189 |
nn.ELU(), |
|
|
190 |
nn.AlphaDropout(p=dropout_rate, inplace=False)) |
|
|
191 |
|
|
|
192 |
self.encoder = nn.Sequential(encoder1, encoder2, encoder3, encoder4) |
|
|
193 |
self.classifier = nn.Sequential(nn.Linear(omic_dim, label_dim)) |
|
|
194 |
|
|
|
195 |
if init_max: init_max_weights(self) |
|
|
196 |
|
|
|
197 |
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False) |
|
|
198 |
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False) |
|
|
199 |
|
|
|
200 |
def forward(self, **kwargs): |
|
|
201 |
x = kwargs['x_omic'] |
|
|
202 |
features = self.encoder(x) |
|
|
203 |
out = self.classifier(features) |
|
|
204 |
if self.act is not None: |
|
|
205 |
out = self.act(out) |
|
|
206 |
|
|
|
207 |
if isinstance(self.act, nn.Sigmoid): |
|
|
208 |
out = out * self.output_range + self.output_shift |
|
|
209 |
|
|
|
210 |
return features, out |
|
|
211 |
|
|
|
212 |
|
|
|
213 |
|
|
|
214 |
############ |
|
|
215 |
# Graph Model |
|
|
216 |
############ |
|
|
217 |
class NormalizeFeaturesV2(object): |
|
|
218 |
r"""Column-normalizes node features to sum-up to one.""" |
|
|
219 |
|
|
|
220 |
def __call__(self, data): |
|
|
221 |
data.x = data.x / data.x.max(0, keepdim=True)[0]#.type(torch.cuda.FloatTensor) |
|
|
222 |
return data |
|
|
223 |
|
|
|
224 |
def __repr__(self): |
|
|
225 |
return '{}()'.format(self.__class__.__name__) |
|
|
226 |
|
|
|
227 |
class NormalizeFeaturesV2(object): |
|
|
228 |
r"""Column-normalizes node features to sum-up to one.""" |
|
|
229 |
|
|
|
230 |
def __call__(self, data): |
|
|
231 |
data.x[:, :12] = data.x[:, :12] / data.x[:, :12].max(0, keepdim=True)[0] |
|
|
232 |
data.x = data.x.type(torch.cuda.FloatTensor) |
|
|
233 |
return data |
|
|
234 |
|
|
|
235 |
def __repr__(self): |
|
|
236 |
return '{}()'.format(self.__class__.__name__) |
|
|
237 |
|
|
|
238 |
|
|
|
239 |
class NormalizeEdgesV2(object): |
|
|
240 |
r"""Column-normalizes node features to sum-up to one.""" |
|
|
241 |
|
|
|
242 |
def __call__(self, data): |
|
|
243 |
data.edge_attr = data.edge_attr.type(torch.cuda.FloatTensor) |
|
|
244 |
data.edge_attr = data.edge_attr / data.edge_attr.max(0, keepdim=True)[0]#.type(torch.cuda.FloatTensor) |
|
|
245 |
return data |
|
|
246 |
|
|
|
247 |
def __repr__(self): |
|
|
248 |
return '{}()'.format(self.__class__.__name__) |
|
|
249 |
|
|
|
250 |
|
|
|
251 |
class GraphNet(torch.nn.Module): |
|
|
252 |
def __init__(self, features=1036, nhid=128, grph_dim=32, nonlinearity=torch.tanh, |
|
|
253 |
dropout_rate=0.25, GNN='GCN', use_edges=0, pooling_ratio=0.20, act=None, label_dim=1, init_max=True): |
|
|
254 |
super(GraphNet, self).__init__() |
|
|
255 |
|
|
|
256 |
self.dropout_rate = dropout_rate |
|
|
257 |
self.use_edges = use_edges |
|
|
258 |
self.act = act |
|
|
259 |
|
|
|
260 |
self.conv1 = SAGEConv(features, nhid) |
|
|
261 |
self.pool1 = SAGPooling(nhid, ratio=pooling_ratio, gnn=GNN)#, nonlinearity=nonlinearity) |
|
|
262 |
self.conv2 = SAGEConv(nhid, nhid) |
|
|
263 |
self.pool2 = SAGPooling(nhid, ratio=pooling_ratio, gnn=GNN)#, nonlinearity=nonlinearity) |
|
|
264 |
self.conv3 = SAGEConv(nhid, nhid) |
|
|
265 |
self.pool3 = SAGPooling(nhid, ratio=pooling_ratio, gnn=GNN)#, nonlinearity=nonlinearity) |
|
|
266 |
|
|
|
267 |
self.lin1 = torch.nn.Linear(nhid*2, nhid) |
|
|
268 |
self.lin2 = torch.nn.Linear(nhid, grph_dim) |
|
|
269 |
self.lin3 = torch.nn.Linear(grph_dim, label_dim) |
|
|
270 |
|
|
|
271 |
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False) |
|
|
272 |
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False) |
|
|
273 |
|
|
|
274 |
if init_max: |
|
|
275 |
init_max_weights(self) |
|
|
276 |
print("Initialzing with Max") |
|
|
277 |
|
|
|
278 |
def forward(self, **kwargs): |
|
|
279 |
data = kwargs['x_grph'] |
|
|
280 |
data = NormalizeFeaturesV2()(data) |
|
|
281 |
data = NormalizeEdgesV2()(data) |
|
|
282 |
x, edge_index, edge_attr, batch = data.x, data.edge_index, data.edge_attr, data.batch |
|
|
283 |
|
|
|
284 |
#x, edge_index, edge_attr, batch = data.x.type(torch.cuda.FloatTensor), data.edge_index.type(torch.cuda.LongTensor), data.edge_attr.type(torch.cuda.FloatTensor), data.batch |
|
|
285 |
x = F.relu(self.conv1(x, edge_index)) |
|
|
286 |
x, edge_index, edge_attr, batch, _ = self.pool1(x, edge_index, edge_attr, batch) |
|
|
287 |
x1 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1) |
|
|
288 |
|
|
|
289 |
x = F.relu(self.conv2(x, edge_index)) |
|
|
290 |
x, edge_index, edge_attr, batch, _ = self.pool2(x, edge_index, edge_attr, batch) |
|
|
291 |
x2 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1) |
|
|
292 |
|
|
|
293 |
x = F.relu(self.conv3(x, edge_index)) |
|
|
294 |
x, edge_index, edge_attr, batch, _ = self.pool3(x, edge_index, edge_attr, batch) |
|
|
295 |
x3 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1) |
|
|
296 |
|
|
|
297 |
x = x1 + x2 + x3 |
|
|
298 |
|
|
|
299 |
x = F.relu(self.lin1(x)) |
|
|
300 |
x = F.dropout(x, p=self.dropout_rate, training=self.training) |
|
|
301 |
features = F.relu(self.lin2(x)) |
|
|
302 |
out = self.lin3(features) |
|
|
303 |
if self.act is not None: |
|
|
304 |
out = self.act(out) |
|
|
305 |
|
|
|
306 |
if isinstance(self.act, nn.Sigmoid): |
|
|
307 |
out = out * self.output_range + self.output_shift |
|
|
308 |
|
|
|
309 |
return features, out |
|
|
310 |
|
|
|
311 |
|
|
|
312 |
|
|
|
313 |
############ |
|
|
314 |
# Path Model |
|
|
315 |
############ |
|
|
316 |
model_urls = { |
|
|
317 |
'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth', |
|
|
318 |
'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth', |
|
|
319 |
'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth', |
|
|
320 |
'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth', |
|
|
321 |
'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth', |
|
|
322 |
'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth', |
|
|
323 |
'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth', |
|
|
324 |
'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth', |
|
|
325 |
} |
|
|
326 |
|
|
|
327 |
|
|
|
328 |
class PathNet(nn.Module): |
|
|
329 |
|
|
|
330 |
def __init__(self, features, path_dim=32, act=None, num_classes=1): |
|
|
331 |
super(PathNet, self).__init__() |
|
|
332 |
self.features = features |
|
|
333 |
self.avgpool = nn.AdaptiveAvgPool2d((7, 7)) |
|
|
334 |
|
|
|
335 |
self.classifier = nn.Sequential( |
|
|
336 |
nn.Linear(512 * 7 * 7, 1024), |
|
|
337 |
nn.ReLU(True), |
|
|
338 |
nn.Dropout(0.25), |
|
|
339 |
nn.Linear(1024, 1024), |
|
|
340 |
nn.ReLU(True), |
|
|
341 |
nn.Dropout(0.25), |
|
|
342 |
nn.Linear(1024, path_dim), |
|
|
343 |
nn.ReLU(True), |
|
|
344 |
nn.Dropout(0.05) |
|
|
345 |
) |
|
|
346 |
|
|
|
347 |
self.linear = nn.Linear(path_dim, num_classes) |
|
|
348 |
self.act = act |
|
|
349 |
|
|
|
350 |
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False) |
|
|
351 |
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False) |
|
|
352 |
|
|
|
353 |
dfs_freeze(self.features) |
|
|
354 |
|
|
|
355 |
def forward(self, **kwargs): |
|
|
356 |
x = kwargs['x_path'] |
|
|
357 |
x = self.features(x) |
|
|
358 |
x = self.avgpool(x) |
|
|
359 |
x = x.view(x.size(0), -1) |
|
|
360 |
features = self.classifier(x) |
|
|
361 |
hazard = self.linear(features) |
|
|
362 |
|
|
|
363 |
if self.act is not None: |
|
|
364 |
hazard = self.act(hazard) |
|
|
365 |
|
|
|
366 |
if isinstance(self.act, nn.Sigmoid): |
|
|
367 |
hazard = hazard * self.output_range + self.output_shift |
|
|
368 |
|
|
|
369 |
return features, hazard |
|
|
370 |
|
|
|
371 |
|
|
|
372 |
def make_layers(cfg, batch_norm=False): |
|
|
373 |
layers = [] |
|
|
374 |
in_channels = 3 |
|
|
375 |
for v in cfg: |
|
|
376 |
if v == 'M': |
|
|
377 |
layers += [nn.MaxPool2d(kernel_size=2, stride=2)] |
|
|
378 |
else: |
|
|
379 |
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) |
|
|
380 |
if batch_norm: |
|
|
381 |
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] |
|
|
382 |
else: |
|
|
383 |
layers += [conv2d, nn.ReLU(inplace=True)] |
|
|
384 |
in_channels = v |
|
|
385 |
return nn.Sequential(*layers) |
|
|
386 |
|
|
|
387 |
|
|
|
388 |
cfgs = { |
|
|
389 |
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], |
|
|
390 |
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], |
|
|
391 |
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], |
|
|
392 |
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], |
|
|
393 |
} |
|
|
394 |
|
|
|
395 |
|
|
|
396 |
|
|
|
397 |
def get_vgg(arch='vgg19_bn', cfg='E', act=None, batch_norm=True, label_dim=1, pretrained=True, progress=True, **kwargs): |
|
|
398 |
model = PathNet(make_layers(cfgs[cfg], batch_norm=batch_norm), act=act, num_classes=label_dim, **kwargs) |
|
|
399 |
|
|
|
400 |
if pretrained: |
|
|
401 |
pretrained_dict = load_state_dict_from_url(model_urls[arch], progress=progress) |
|
|
402 |
|
|
|
403 |
for key in list(pretrained_dict.keys()): |
|
|
404 |
if 'classifier' in key: pretrained_dict.pop(key) |
|
|
405 |
|
|
|
406 |
model.load_state_dict(pretrained_dict, strict=False) |
|
|
407 |
print("Initializing Path Weights") |
|
|
408 |
|
|
|
409 |
return model |
|
|
410 |
|
|
|
411 |
|
|
|
412 |
|
|
|
413 |
############################################################################## |
|
|
414 |
# Graph + Omic |
|
|
415 |
############################################################################## |
|
|
416 |
class GraphomicNet(nn.Module): |
|
|
417 |
def __init__(self, opt, act, k): |
|
|
418 |
super(GraphomicNet, self).__init__() |
|
|
419 |
self.grph_net = GraphNet(grph_dim=opt.grph_dim, dropout_rate=opt.dropout_rate, use_edges=1, pooling_ratio=0.20, label_dim=opt.label_dim, init_max=False) |
|
|
420 |
self.omic_net = MaxNet(input_dim=opt.input_size_omic, omic_dim=opt.omic_dim, dropout_rate=opt.dropout_rate, act=act, label_dim=opt.label_dim, init_max=False) |
|
|
421 |
|
|
|
422 |
if k is not None: |
|
|
423 |
pt_fname = '_%d.pt' % k |
|
|
424 |
best_grph_ckpt = torch.load(os.path.join(opt.checkpoints_dir, opt.exp_name, 'graph', 'graph'+pt_fname), map_location=torch.device('cpu')) |
|
|
425 |
best_omic_ckpt = torch.load(os.path.join(opt.checkpoints_dir, opt.exp_name, 'omic', 'omic'+pt_fname), map_location=torch.device('cpu')) |
|
|
426 |
self.grph_net.load_state_dict(best_grph_ckpt['model_state_dict']) |
|
|
427 |
self.omic_net.load_state_dict(best_omic_ckpt['model_state_dict']) |
|
|
428 |
print("Loading Models:\n", os.path.join(opt.checkpoints_dir, opt.exp_name, 'graph', 'graph'+pt_fname), "\n", os.path.join(opt.checkpoints_dir, opt.exp_name, 'omic', 'omic'+pt_fname)) |
|
|
429 |
|
|
|
430 |
self.fusion = define_bifusion(fusion_type=opt.fusion_type, skip=opt.skip, use_bilinear=opt.use_bilinear, gate1=opt.grph_gate, gate2=opt.omic_gate, dim1=opt.grph_dim, dim2=opt.omic_dim, scale_dim1=opt.grph_scale, scale_dim2=opt.omic_scale, mmhid=opt.mmhid, dropout_rate=opt.dropout_rate) |
|
|
431 |
self.classifier = nn.Sequential(nn.Linear(opt.mmhid, opt.label_dim)) |
|
|
432 |
self.act = act |
|
|
433 |
|
|
|
434 |
dfs_freeze(self.grph_net) |
|
|
435 |
dfs_freeze(self.omic_net) |
|
|
436 |
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False) |
|
|
437 |
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False) |
|
|
438 |
|
|
|
439 |
def forward(self, **kwargs): |
|
|
440 |
grph_vec, _ = self.grph_net(x_grph=kwargs['x_grph']) |
|
|
441 |
omic_vec, _ = self.omic_net(x_omic=kwargs['x_omic']) |
|
|
442 |
features = self.fusion(grph_vec, omic_vec) |
|
|
443 |
hazard = self.classifier(features) |
|
|
444 |
if self.act is not None: |
|
|
445 |
hazard = self.act(hazard) |
|
|
446 |
|
|
|
447 |
if isinstance(self.act, nn.Sigmoid): |
|
|
448 |
hazard = hazard * self.output_range + self.output_shift |
|
|
449 |
|
|
|
450 |
return features, hazard |
|
|
451 |
|
|
|
452 |
def __hasattr__(self, name): |
|
|
453 |
if '_parameters' in self.__dict__: |
|
|
454 |
_parameters = self.__dict__['_parameters'] |
|
|
455 |
if name in _parameters: |
|
|
456 |
return True |
|
|
457 |
if '_buffers' in self.__dict__: |
|
|
458 |
_buffers = self.__dict__['_buffers'] |
|
|
459 |
if name in _buffers: |
|
|
460 |
return True |
|
|
461 |
if '_modules' in self.__dict__: |
|
|
462 |
modules = self.__dict__['_modules'] |
|
|
463 |
if name in modules: |
|
|
464 |
return True |
|
|
465 |
return False |
|
|
466 |
|
|
|
467 |
|
|
|
468 |
############################################################################## |
|
|
469 |
# Path + Omic |
|
|
470 |
############################################################################## |
|
|
471 |
class PathomicNet(nn.Module): |
|
|
472 |
def __init__(self, opt, act, k): |
|
|
473 |
super(PathomicNet, self).__init__() |
|
|
474 |
self.omic_net = MaxNet(input_dim=opt.input_size_omic, omic_dim=opt.omic_dim, dropout_rate=opt.dropout_rate, act=act, label_dim=opt.label_dim, init_max=False) |
|
|
475 |
|
|
|
476 |
if k is not None: |
|
|
477 |
pt_fname = '_%d.pt' % k |
|
|
478 |
best_omic_ckpt = torch.load(os.path.join(opt.checkpoints_dir, opt.exp_name, 'omic', 'omic'+pt_fname), map_location=torch.device('cpu')) |
|
|
479 |
self.omic_net.load_state_dict(best_omic_ckpt['model_state_dict']) |
|
|
480 |
print("Loading Models:\n", os.path.join(opt.checkpoints_dir, opt.exp_name, 'omic', 'omic'+pt_fname)) |
|
|
481 |
|
|
|
482 |
self.fusion = define_bifusion(fusion_type=opt.fusion_type, skip=opt.skip, use_bilinear=opt.use_bilinear, gate1=opt.path_gate, gate2=opt.omic_gate, dim1=opt.path_dim, dim2=opt.omic_dim, scale_dim1=opt.path_scale, scale_dim2=opt.omic_scale, mmhid=opt.mmhid, dropout_rate=opt.dropout_rate) |
|
|
483 |
self.classifier = nn.Sequential(nn.Linear(opt.mmhid, opt.label_dim)) |
|
|
484 |
self.act = act |
|
|
485 |
|
|
|
486 |
dfs_freeze(self.omic_net) |
|
|
487 |
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False) |
|
|
488 |
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False) |
|
|
489 |
|
|
|
490 |
def forward(self, **kwargs): |
|
|
491 |
path_vec = kwargs['x_path'] |
|
|
492 |
omic_vec, _ = self.omic_net(x_omic=kwargs['x_omic']) |
|
|
493 |
features = self.fusion(path_vec, omic_vec) |
|
|
494 |
hazard = self.classifier(features) |
|
|
495 |
if self.act is not None: |
|
|
496 |
hazard = self.act(hazard) |
|
|
497 |
|
|
|
498 |
if isinstance(self.act, nn.Sigmoid): |
|
|
499 |
hazard = hazard * self.output_range + self.output_shift |
|
|
500 |
|
|
|
501 |
return features, hazard |
|
|
502 |
|
|
|
503 |
def __hasattr__(self, name): |
|
|
504 |
if '_parameters' in self.__dict__: |
|
|
505 |
_parameters = self.__dict__['_parameters'] |
|
|
506 |
if name in _parameters: |
|
|
507 |
return True |
|
|
508 |
if '_buffers' in self.__dict__: |
|
|
509 |
_buffers = self.__dict__['_buffers'] |
|
|
510 |
if name in _buffers: |
|
|
511 |
return True |
|
|
512 |
if '_modules' in self.__dict__: |
|
|
513 |
modules = self.__dict__['_modules'] |
|
|
514 |
if name in modules: |
|
|
515 |
return True |
|
|
516 |
return False |
|
|
517 |
|
|
|
518 |
|
|
|
519 |
|
|
|
520 |
############################################################################# |
|
|
521 |
# Path + Graph + Omic |
|
|
522 |
############################################################################## |
|
|
523 |
class PathgraphomicNet(nn.Module): |
|
|
524 |
def __init__(self, opt, act, k): |
|
|
525 |
super(PathgraphomicNet, self).__init__() |
|
|
526 |
self.grph_net = GraphNet(grph_dim=opt.grph_dim, dropout_rate=opt.dropout_rate, use_edges=1, pooling_ratio=0.20, label_dim=opt.label_dim, init_max=False) |
|
|
527 |
self.omic_net = MaxNet(input_dim=opt.input_size_omic, omic_dim=opt.omic_dim, dropout_rate=opt.dropout_rate, act=act, label_dim=opt.label_dim, init_max=False) |
|
|
528 |
|
|
|
529 |
if k is not None: |
|
|
530 |
pt_fname = '_%d.pt' % k |
|
|
531 |
best_grph_ckpt = torch.load(os.path.join(opt.checkpoints_dir, opt.exp_name, 'graph', 'graph'+pt_fname), map_location=torch.device('cpu')) |
|
|
532 |
best_omic_ckpt = torch.load(os.path.join(opt.checkpoints_dir, opt.exp_name, 'omic', 'omic'+pt_fname), map_location=torch.device('cpu')) |
|
|
533 |
self.grph_net.load_state_dict(best_grph_ckpt['model_state_dict']) |
|
|
534 |
self.omic_net.load_state_dict(best_omic_ckpt['model_state_dict']) |
|
|
535 |
print("Loading Models:\n", os.path.join(opt.checkpoints_dir, opt.exp_name, 'graph', 'graph'+pt_fname), "\n", os.path.join(opt.checkpoints_dir, opt.exp_name, 'omic', 'omic'+pt_fname)) |
|
|
536 |
|
|
|
537 |
self.fusion = define_trifusion(fusion_type=opt.fusion_type, skip=opt.skip, use_bilinear=opt.use_bilinear, gate1=opt.path_gate, gate2=opt.grph_gate, gate3=opt.omic_gate, dim1=opt.path_dim, dim2=opt.grph_dim, dim3=opt.omic_dim, scale_dim1=opt.path_scale, scale_dim2=opt.grph_scale, scale_dim3=opt.omic_scale, mmhid=opt.mmhid, dropout_rate=opt.dropout_rate) |
|
|
538 |
self.classifier = nn.Sequential(nn.Linear(opt.mmhid, opt.label_dim)) |
|
|
539 |
self.act = act |
|
|
540 |
|
|
|
541 |
dfs_freeze(self.grph_net) |
|
|
542 |
dfs_freeze(self.omic_net) |
|
|
543 |
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False) |
|
|
544 |
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False) |
|
|
545 |
|
|
|
546 |
def forward(self, **kwargs): |
|
|
547 |
path_vec = kwargs['x_path'] |
|
|
548 |
grph_vec, _ = self.grph_net(x_grph=kwargs['x_grph']) |
|
|
549 |
omic_vec, _ = self.omic_net(x_omic=kwargs['x_omic']) |
|
|
550 |
features = self.fusion(path_vec, grph_vec, omic_vec) |
|
|
551 |
hazard = self.classifier(features) |
|
|
552 |
if self.act is not None: |
|
|
553 |
hazard = self.act(hazard) |
|
|
554 |
|
|
|
555 |
if isinstance(self.act, nn.Sigmoid): |
|
|
556 |
hazard = hazard * self.output_range + self.output_shift |
|
|
557 |
|
|
|
558 |
return features, hazard |
|
|
559 |
|
|
|
560 |
def __hasattr__(self, name): |
|
|
561 |
if '_parameters' in self.__dict__: |
|
|
562 |
_parameters = self.__dict__['_parameters'] |
|
|
563 |
if name in _parameters: |
|
|
564 |
return True |
|
|
565 |
if '_buffers' in self.__dict__: |
|
|
566 |
_buffers = self.__dict__['_buffers'] |
|
|
567 |
if name in _buffers: |
|
|
568 |
return True |
|
|
569 |
if '_modules' in self.__dict__: |
|
|
570 |
modules = self.__dict__['_modules'] |
|
|
571 |
if name in modules: |
|
|
572 |
return True |
|
|
573 |
return False |
|
|
574 |
|
|
|
575 |
|
|
|
576 |
|
|
|
577 |
############################################################################## |
|
|
578 |
# Ensembling Effects |
|
|
579 |
############################################################################## |
|
|
580 |
class PathgraphNet(nn.Module): |
|
|
581 |
def __init__(self, opt, act, k): |
|
|
582 |
super(PathgraphNet, self).__init__() |
|
|
583 |
self.grph_net = GraphNet(grph_dim=opt.grph_dim, dropout_rate=opt.dropout_rate, use_edges=1, pooling_ratio=0.20, label_dim=opt.label_dim, init_max=False) |
|
|
584 |
|
|
|
585 |
if k is not None: |
|
|
586 |
pt_fname = '_%d.pt' % k |
|
|
587 |
best_grph_ckpt = torch.load(os.path.join(opt.checkpoints_dir, opt.exp_name, 'graph', 'graph'+pt_fname), map_location=torch.device('cpu')) |
|
|
588 |
self.grph_net.load_state_dict(best_grph_ckpt['model_state_dict']) |
|
|
589 |
print("Loading Models:\n", os.path.join(opt.checkpoints_dir, opt.exp_name, 'graph', 'graph'+pt_fname)) |
|
|
590 |
|
|
|
591 |
self.fusion = define_bifusion(fusion_type=opt.fusion_type, skip=opt.skip, use_bilinear=opt.use_bilinear, gate1=opt.path_gate, gate2=opt.grph_gate, dim1=opt.path_dim, dim2=opt.grph_dim, scale_dim1=opt.path_scale, scale_dim2=opt.grph_scale, mmhid=opt.mmhid, dropout_rate=opt.dropout_rate) |
|
|
592 |
self.classifier = nn.Sequential(nn.Linear(opt.mmhid, opt.label_dim)) |
|
|
593 |
self.act = act |
|
|
594 |
|
|
|
595 |
dfs_freeze(self.grph_net) |
|
|
596 |
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False) |
|
|
597 |
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False) |
|
|
598 |
|
|
|
599 |
def forward(self, **kwargs): |
|
|
600 |
path_vec = kwargs['x_path'] |
|
|
601 |
grph_vec, _ = self.grph_net(x_grph=kwargs['x_grph']) |
|
|
602 |
features = self.fusion(path_vec, grph_vec) |
|
|
603 |
hazard = self.classifier(features) |
|
|
604 |
if self.act is not None: |
|
|
605 |
hazard = self.act(hazard) |
|
|
606 |
|
|
|
607 |
if isinstance(self.act, nn.Sigmoid): |
|
|
608 |
hazard = hazard * self.output_range + self.output_shift |
|
|
609 |
|
|
|
610 |
return features, hazard |
|
|
611 |
|
|
|
612 |
def __hasattr__(self, name): |
|
|
613 |
if '_parameters' in self.__dict__: |
|
|
614 |
_parameters = self.__dict__['_parameters'] |
|
|
615 |
if name in _parameters: |
|
|
616 |
return True |
|
|
617 |
if '_buffers' in self.__dict__: |
|
|
618 |
_buffers = self.__dict__['_buffers'] |
|
|
619 |
if name in _buffers: |
|
|
620 |
return True |
|
|
621 |
if '_modules' in self.__dict__: |
|
|
622 |
modules = self.__dict__['_modules'] |
|
|
623 |
if name in modules: |
|
|
624 |
return True |
|
|
625 |
return False |
|
|
626 |
|
|
|
627 |
|
|
|
628 |
class PathpathNet(nn.Module): |
|
|
629 |
def __init__(self, opt, act, k): |
|
|
630 |
super(PathpathNet, self).__init__() |
|
|
631 |
self.fusion = define_bifusion(fusion_type=opt.fusion_type, skip=opt.skip, use_bilinear=opt.use_bilinear, gate1=opt.path_gate, gate2=1-opt.path_gate if opt.path_gate else 0, |
|
|
632 |
dim1=opt.path_dim, dim2=opt.path_dim, scale_dim1=opt.path_scale, scale_dim2=opt.path_scale, mmhid=opt.mmhid, dropout_rate=opt.dropout_rate) |
|
|
633 |
self.classifier = nn.Sequential(nn.Linear(opt.mmhid, opt.label_dim)) |
|
|
634 |
self.act = act |
|
|
635 |
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False) |
|
|
636 |
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False) |
|
|
637 |
|
|
|
638 |
def forward(self, **kwargs): |
|
|
639 |
path_vec = kwargs['x_path'] |
|
|
640 |
features = self.fusion(path_vec, path_vec) |
|
|
641 |
hazard = self.classifier(features) |
|
|
642 |
if self.act is not None: |
|
|
643 |
hazard = self.act(hazard) |
|
|
644 |
if isinstance(self.act, nn.Sigmoid): |
|
|
645 |
hazard = hazard * self.output_range + self.output_shift |
|
|
646 |
return features, hazard |
|
|
647 |
|
|
|
648 |
def __hasattr__(self, name): |
|
|
649 |
if '_parameters' in self.__dict__: |
|
|
650 |
_parameters = self.__dict__['_parameters'] |
|
|
651 |
if name in _parameters: |
|
|
652 |
return True |
|
|
653 |
if '_buffers' in self.__dict__: |
|
|
654 |
_buffers = self.__dict__['_buffers'] |
|
|
655 |
if name in _buffers: |
|
|
656 |
return True |
|
|
657 |
if '_modules' in self.__dict__: |
|
|
658 |
modules = self.__dict__['_modules'] |
|
|
659 |
if name in modules: |
|
|
660 |
return True |
|
|
661 |
return False |
|
|
662 |
|
|
|
663 |
|
|
|
664 |
class GraphgraphNet(nn.Module): |
|
|
665 |
def __init__(self, opt, act, k): |
|
|
666 |
super(GraphgraphNet, self).__init__() |
|
|
667 |
self.grph_net = GraphNet(grph_dim=opt.grph_dim, dropout_rate=opt.dropout_rate, use_edges=1, pooling_ratio=0.20, label_dim=opt.label_dim, init_max=False) |
|
|
668 |
if k is not None: |
|
|
669 |
pt_fname = '_%d.pt' % k |
|
|
670 |
best_grph_ckpt = torch.load(os.path.join(opt.checkpoints_dir, opt.exp_name, 'graph', 'graph'+pt_fname), map_location=torch.device('cpu')) |
|
|
671 |
self.grph_net.load_state_dict(best_grph_ckpt['model_state_dict']) |
|
|
672 |
print("Loading Models:\n", os.path.join(opt.checkpoints_dir, opt.exp_name, 'graph', 'graph'+pt_fname)) |
|
|
673 |
self.fusion = define_bifusion(fusion_type=opt.fusion_type, skip=opt.skip, use_bilinear=opt.use_bilinear, gate1=opt.grph_gate, gate2=1-opt.grph_gate if opt.grph_gate else 0, |
|
|
674 |
dim1=opt.grph_dim, dim2=opt.grph_dim, scale_dim1=opt.grph_scale, scale_dim2=opt.grph_scale, mmhid=opt.mmhid, dropout_rate=opt.dropout_rate) |
|
|
675 |
self.classifier = nn.Sequential(nn.Linear(opt.mmhid, opt.label_dim)) |
|
|
676 |
self.act = act |
|
|
677 |
dfs_freeze(self.grph_net) |
|
|
678 |
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False) |
|
|
679 |
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False) |
|
|
680 |
|
|
|
681 |
def forward(self, **kwargs): |
|
|
682 |
grph_vec, _ = self.grph_net(x_grph=kwargs['x_grph']) |
|
|
683 |
features = self.fusion(grph_vec, grph_vec) |
|
|
684 |
hazard = self.classifier(features) |
|
|
685 |
if self.act is not None: |
|
|
686 |
hazard = self.act(hazard) |
|
|
687 |
if isinstance(self.act, nn.Sigmoid): |
|
|
688 |
hazard = hazard * self.output_range + self.output_shift |
|
|
689 |
return features, hazard |
|
|
690 |
|
|
|
691 |
def __hasattr__(self, name): |
|
|
692 |
if '_parameters' in self.__dict__: |
|
|
693 |
_parameters = self.__dict__['_parameters'] |
|
|
694 |
if name in _parameters: |
|
|
695 |
return True |
|
|
696 |
if '_buffers' in self.__dict__: |
|
|
697 |
_buffers = self.__dict__['_buffers'] |
|
|
698 |
if name in _buffers: |
|
|
699 |
return True |
|
|
700 |
if '_modules' in self.__dict__: |
|
|
701 |
modules = self.__dict__['_modules'] |
|
|
702 |
if name in modules: |
|
|
703 |
return True |
|
|
704 |
return False |
|
|
705 |
|
|
|
706 |
|
|
|
707 |
class OmicomicNet(nn.Module): |
|
|
708 |
def __init__(self, opt, act, k): |
|
|
709 |
super(OmicomicNet, self).__init__() |
|
|
710 |
self.omic_net = MaxNet(input_dim=opt.input_size_omic, omic_dim=opt.omic_dim, dropout_rate=opt.dropout_rate, act=act, label_dim=opt.label_dim, init_max=False) |
|
|
711 |
if k is not None: |
|
|
712 |
pt_fname = '_%d.pt' % k |
|
|
713 |
best_omic_ckpt = torch.load(os.path.join(opt.checkpoints_dir, opt.exp_name, 'omic', 'omic'+pt_fname), map_location=torch.device('cpu')) |
|
|
714 |
self.omic_net.load_state_dict(best_omic_ckpt['model_state_dict']) |
|
|
715 |
print("Loading Models:\n", os.path.join(opt.checkpoints_dir, opt.exp_name, 'omic', 'omic'+pt_fname)) |
|
|
716 |
self.fusion = define_bifusion(fusion_type=opt.fusion_type, skip=opt.skip, use_bilinear=opt.use_bilinear, gate1=opt.omic_gate, gate2=1-opt.omic_gate if opt.omic_gate else 0, |
|
|
717 |
dim1=opt.omic_dim, dim2=opt.omic_dim, scale_dim1=opt.omic_scale, scale_dim2=opt.omic_scale, mmhid=opt.mmhid, dropout_rate=opt.dropout_rate) |
|
|
718 |
self.classifier = nn.Sequential(nn.Linear(opt.mmhid, opt.label_dim)) |
|
|
719 |
self.act = act |
|
|
720 |
dfs_freeze(self.omic_net) |
|
|
721 |
self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False) |
|
|
722 |
self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False) |
|
|
723 |
|
|
|
724 |
def forward(self, **kwargs): |
|
|
725 |
omic_vec, _ = self.omic_net(x_omic=kwargs['x_omic']) |
|
|
726 |
features = self.fusion(omic_vec, omic_vec) |
|
|
727 |
hazard = self.classifier(features) |
|
|
728 |
if self.act is not None: |
|
|
729 |
hazard = self.act(hazard) |
|
|
730 |
if isinstance(self.act, nn.Sigmoid): |
|
|
731 |
hazard = hazard * self.output_range + self.output_shift |
|
|
732 |
return features, hazard |
|
|
733 |
|
|
|
734 |
def __hasattr__(self, name): |
|
|
735 |
if '_parameters' in self.__dict__: |
|
|
736 |
_parameters = self.__dict__['_parameters'] |
|
|
737 |
if name in _parameters: |
|
|
738 |
return True |
|
|
739 |
if '_buffers' in self.__dict__: |
|
|
740 |
_buffers = self.__dict__['_buffers'] |
|
|
741 |
if name in _buffers: |
|
|
742 |
return True |
|
|
743 |
if '_modules' in self.__dict__: |
|
|
744 |
modules = self.__dict__['_modules'] |
|
|
745 |
if name in modules: |
|
|
746 |
return True |
|
|
747 |
return False |