--- a +++ b/make_splits.py @@ -0,0 +1,201 @@ +### data_loaders.py +import argparse +import os +import pickle + +import numpy as np +import pandas as pd +from PIL import Image +from sklearn import preprocessing + +# Env +from networks import define_net +from utils import getCleanAllDataset +import torch +from torchvision import transforms +from options import parse_gpuids + +### Initializes parser and data +""" +all_st +python make_splits.py --ignore_missing_moltype 0 --ignore_missing_histype 0 --use_vgg_features 0 --roi_dir all_st # for training Surv Path, Surv Graph, and testing Surv Graph +python make_splits.py --ignore_missing_moltype 0 --ignore_missing_histype 1 --use_vgg_features 0 --roi_dir all_st # for training Grad Path, Grad Graph, and testing Surv_graph +python make_splits.py --ignore_missing_moltype 1 --ignore_missing_histype 0 --use_vgg_features 0 --roi_dir all_st # for training Surv Omic, Surv Graphomic +python make_splits.py --ignore_missing_moltype 1 --ignore_missing_histype 1 --use_vgg_features 0 --roi_dir all_st # for training Grad Omic, Grad Graphomic + +all_st_patches_512 (no VGG) +python make_splits.py --ignore_missing_moltype 0 --ignore_missing_histype 0 --use_vgg_features 0 --roi_dir all_st_patches_512 # for testing Surv Path +python make_splits.py --ignore_missing_moltype 0 --ignore_missing_histype 1 --use_vgg_features 0 --roi_dir all_st_patches_512 # for testing Grad Path + +all_st_patches_512 (use VGG) +python make_splits.py --ignore_missing_moltype 0 --ignore_missing_histype 0 --use_vgg_features 1 --roi_dir all_st_patches_512 --exp_name surv_15 --gpu_ids 0 # for Surv Pathgraph +python make_splits.py --ignore_missing_moltype 0 --ignore_missing_histype 1 --use_vgg_features 1 --roi_dir all_st_patches_512 --exp_name grad_15 --act_type LSM --label_dim 3 --gpu_ids 1 # for Grad Pathgraph +python make_splits.py --ignore_missing_moltype 1 --ignore_missing_histype 0 --use_vgg_features 1 --roi_dir all_st_patches_512 --exp_name surv_15 --gpu_ids 2 # for Surv Pathomic, Pathgraphomic +python make_splits.py --ignore_missing_moltype 1 --ignore_missing_histype 1 --use_vgg_features 1 --roi_dir all_st_patches_512 --exp_name grad_15 --act_type LSM --label_dim 3 --gpu_ids 3 # for Grad Pathomic, Pathgraphomic + + +python make_splits.py --ignore_missing_moltype 0 --ignore_missing_histype 1 --make_all_train 1 + +python make_splits.py --ignore_missing_moltype 1 --ignore_missing_histype 0 --use_vgg_features 0 --roi_dir all_st --use_rnaseq 1 +python make_splits.py --ignore_missing_moltype 1 --ignore_missing_histype 1 --use_vgg_features 0 --roi_dir all_st --use_rnaseq 1 +python make_splits.py --ignore_missing_moltype 1 --ignore_missing_histype 0 --use_vgg_features 1 --roi_dir all_st_patches_512 --exp_name surv_15 --use_rnaseq 1 --gpu_ids 2 +python make_splits.py --ignore_missing_moltype 1 --ignore_missing_histype 1 --use_vgg_features 1 --roi_dir all_st_patches_512 --exp_name grad_15 --use_rnaseq 1 --act_type LSM --label_dim 3 --gpu_ids 3 + + +python make_splits.py --ignore_missing_moltype 0 --ignore_missing_histype 0 --use_vgg_features 1 --roi_dir all_st_patches_512 --exp_name surv_15_rnaseq --gpu_ids 0 +python make_splits.py --ignore_missing_moltype 1 --ignore_missing_histype 0 --use_vgg_features 1 --roi_dir all_st_patches_512 --exp_name surv_15_rnaseq --use_rnaseq 1 --gpu_ids 0 + +python make_splits.py --ignore_missing_moltype 0 --ignore_missing_histype 1 --use_vgg_features 1 --roi_dir all_st_patches_512 --exp_name grad_15 --act_type LSM --label_dim 3 --gpu_ids 1 +python make_splits.py --ignore_missing_moltype 1 --ignore_missing_histype 1 --use_vgg_features 1 --roi_dir all_st_patches_512 --exp_name grad_15 --use_rnaseq 1 --act_type LSM --label_dim 3 --gpu_ids 1 + +python make_splits.py --ignore_missing_moltype 1 --ignore_missing_histype 0 --use_vgg_features 0 --roi_dir all_st --use_rnaseq 1 +python make_splits.py --ignore_missing_moltype 1 --ignore_missing_histype 0 --use_vgg_features 1 --roi_dir all_st_patches_512 --exp_name surv_15_rnaseq --gpu_ids 2 + +python make_splits.py --ignore_missing_moltype 1 --ignore_missing_histype 1 --use_vgg_features 0 --roi_dir all_st --use_rnaseq 1 +python make_splits.py --ignore_missing_moltype 1 --ignore_missing_histype 1 --use_vgg_features 1 --roi_dir all_st_patches_512 --exp_name grad_15 --act_type LSM --label_dim 3 --gpu_ids 3 + + + + +""" +def parse_args(): + parser = argparse.ArgumentParser() + parser.add_argument('--dataroot', type=str, default='./data/TCGA_GBMLGG/', help="datasets") + parser.add_argument('--roi_dir', type=str, default='all_st') + parser.add_argument('--graph_feat_type', type=str, default='cpc', help="graph features to use") + parser.add_argument('--ignore_missing_moltype', type=int, default=0, help="Ignore data points with missing molecular subtype") + parser.add_argument('--ignore_missing_histype', type=int, default=0, help="Ignore data points with missign histology subtype") + parser.add_argument('--make_all_train', type=int, default=0) + parser.add_argument('--use_vgg_features', type=int, default=0) + parser.add_argument('--use_rnaseq', type=int, default=0) + + + parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints/TCGA_GBMLGG/', help='models are saved here') + parser.add_argument('--exp_name', type=str, default='surv_15_rnaseq', help='name of the project. It decides where to store samples and models') + parser.add_argument('--gpu_ids', type=str, default='0,1,2,3', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') + parser.add_argument('--mode', type=str, default='path', help='mode') + parser.add_argument('--model_name', type=str, default='path', help='mode') + parser.add_argument('--task', type=str, default='surv', help='surv | grad') + parser.add_argument('--act_type', type=str, default='Sigmoid', help='activation function') + parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.') + parser.add_argument('--label_dim', type=int, default=1, help='size of output') + parser.add_argument('--batch_size', type=int, default=32, help="Number of batches to train/test for. Default: 256") + parser.add_argument('--path_dim', type=int, default=32) + parser.add_argument('--init_type', type=str, default='none', help='network initialization [normal | xavier | kaiming | orthogonal | max]. Max seems to work well') + parser.add_argument('--dropout_rate', default=0.25, type=float, help='0 - 0.25. Increasing dropout_rate helps overfitting. Some people have gone as high as 0.5. You can try adding more regularization') + + opt = parser.parse_known_args()[0] + opt = parse_gpuids(opt) + return opt + +opt = parse_args() +device = torch.device('cuda:{}'.format(opt.gpu_ids[0])) if opt.gpu_ids else torch.device('cpu') +metadata, all_dataset = getCleanAllDataset(opt.dataroot, opt.ignore_missing_moltype, opt.ignore_missing_histype, opt.use_rnaseq) + +### Creates a mapping from TCGA ID -> Image ROI +img_fnames = os.listdir(os.path.join(opt.dataroot, opt.roi_dir)) +pat2img = {} +for pat, img_fname in zip([img_fname[:12] for img_fname in img_fnames], img_fnames): + if pat not in pat2img.keys(): pat2img[pat] = [] + pat2img[pat].append(img_fname) + +### Dictionary file containing split information +data_dict = {} +data_dict['data_pd'] = all_dataset +#data_dict['pat2img'] = pat2img +#data_dict['img_fnames'] = img_fnames +cv_splits = {} + +### Extracting K-Fold Splits +pnas_splits = pd.read_csv(opt.dataroot+'pnas_splits.csv') +pnas_splits.columns = ['TCGA ID']+[str(k) for k in range(1, 16)] +pnas_splits.index = pnas_splits['TCGA ID'] +pnas_splits = pnas_splits.drop(['TCGA ID'], axis=1) + +### get path_feats +def get_vgg_features(model, device, img_path): + if model is None: + return img_path + else: + x_path = Image.open(img_path).convert('RGB') + normalize = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) + x_path = torch.unsqueeze(normalize(x_path), dim=0) + features, hazard = model(x_path=x_path.to(device)) + return features.cpu().detach().numpy() + +### method for constructing aligned +def getAlignedMultimodalData(opt, model, device, all_dataset, pat_split, pat2img): + x_patname, x_path, x_grph, x_omic, e, t, g = [], [], [], [], [], [], [] + + for pat_name in pat_split: + if pat_name not in all_dataset.index: continue + + for img_fname in pat2img[pat_name]: + grph_fname = img_fname.rstrip('.png')+'.pt' + assert grph_fname in os.listdir(os.path.join(opt.dataroot, '%s_%s' % (opt.roi_dir, opt.graph_feat_type))) + assert all_dataset[all_dataset['TCGA ID'] == pat_name].shape[0] == 1 + + x_patname.append(pat_name) + x_path.append(get_vgg_features(model, device, os.path.join(opt.dataroot, opt.roi_dir, img_fname))) + x_grph.append(os.path.join(opt.dataroot, '%s_%s' % (opt.roi_dir, opt.graph_feat_type), grph_fname)) + x_omic.append(np.array(all_dataset[all_dataset['TCGA ID'] == pat_name].drop(metadata, axis=1))) + e.append(int(all_dataset[all_dataset['TCGA ID']==pat_name]['censored'])) + t.append(int(all_dataset[all_dataset['TCGA ID']==pat_name]['Survival months'])) + g.append(int(all_dataset[all_dataset['TCGA ID']==pat_name]['Grade'])) + + return x_patname, x_path, x_grph, x_omic, e, t, g + +print(all_dataset.shape) + +for k in pnas_splits.columns: + print('Creating Split %s' % k) + pat_train = pnas_splits.index[pnas_splits[k] == 'Train'] if opt.make_all_train == 0 else pnas_splits.index + pat_test = pnas_splits.index[pnas_splits[k] == 'Test'] + cv_splits[int(k)] = {} + + model = None + if opt.use_vgg_features: + load_path = os.path.join(opt.checkpoints_dir, opt.exp_name, opt.model_name, '%s_%s.pt' % (opt.model_name, k)) + model_ckpt = torch.load(load_path, map_location=device) + model_state_dict = model_ckpt['model_state_dict'] + if hasattr(model_state_dict, '_metadata'): del model_state_dict._metadata + model = define_net(opt, None) + if isinstance(model, torch.nn.DataParallel): model = model.module + print('Loading the model from %s' % load_path) + model.load_state_dict(model_state_dict) + model.eval() + + train_x_patname, train_x_path, train_x_grph, train_x_omic, train_e, train_t, train_g = getAlignedMultimodalData(opt, model, device, all_dataset, pat_train, pat2img) + test_x_patname, test_x_path, test_x_grph, test_x_omic, test_e, test_t, test_g = getAlignedMultimodalData(opt, model, device, all_dataset, pat_test, pat2img) + + train_x_omic, train_e, train_t = np.array(train_x_omic).squeeze(axis=1), np.array(train_e, dtype=np.float64), np.array(train_t, dtype=np.float64) + test_x_omic, test_e, test_t = np.array(test_x_omic).squeeze(axis=1), np.array(test_e, dtype=np.float64), np.array(test_t, dtype=np.float64) + + scaler = preprocessing.StandardScaler().fit(train_x_omic) + train_x_omic = scaler.transform(train_x_omic) + test_x_omic = scaler.transform(test_x_omic) + + train_data = {'x_patname': train_x_patname, + 'x_path':np.array(train_x_path), + 'x_grph':train_x_grph, + 'x_omic':train_x_omic, + 'e':np.array(train_e, dtype=np.float64), + 't':np.array(train_t, dtype=np.float64), + 'g':np.array(train_g, dtype=np.float64)} + + test_data = {'x_patname': test_x_patname, + 'x_path':np.array(test_x_path), + 'x_grph':test_x_grph, + 'x_omic':test_x_omic, + 'e':np.array(test_e, dtype=np.float64), + 't':np.array(test_t, dtype=np.float64), + 'g':np.array(test_g, dtype=np.float64)} + + dataset = {'train':train_data, 'test':test_data} + cv_splits[int(k)] = dataset + + if opt.make_all_train: break + +data_dict['cv_splits'] = cv_splits + +pickle.dump(data_dict, open('%s/splits/gbmlgg15cv_%s_%d_%d_%d%s.pkl' % (opt.dataroot, opt.roi_dir, opt.ignore_missing_moltype, opt.ignore_missing_histype, opt.use_vgg_features, '_rnaseq' if opt.use_rnaseq else ''), 'wb')) \ No newline at end of file