|
a |
|
b/fusion.py |
|
|
1 |
import torch |
|
|
2 |
import torch.nn as nn |
|
|
3 |
from utils import init_max_weights |
|
|
4 |
|
|
|
5 |
|
|
|
6 |
class BilinearFusion(nn.Module): |
|
|
7 |
def __init__(self, skip=1, use_bilinear=1, gate1=1, gate2=1, dim1=32, dim2=32, scale_dim1=1, scale_dim2=1, mmhid=64, dropout_rate=0.25): |
|
|
8 |
super(BilinearFusion, self).__init__() |
|
|
9 |
self.skip = skip |
|
|
10 |
self.use_bilinear = use_bilinear |
|
|
11 |
self.gate1 = gate1 |
|
|
12 |
self.gate2 = gate2 |
|
|
13 |
|
|
|
14 |
dim1_og, dim2_og, dim1, dim2 = dim1, dim2, dim1//scale_dim1, dim2//scale_dim2 |
|
|
15 |
skip_dim = dim1+dim2+2 if skip else 0 |
|
|
16 |
|
|
|
17 |
self.linear_h1 = nn.Sequential(nn.Linear(dim1_og, dim1), nn.ReLU()) |
|
|
18 |
self.linear_z1 = nn.Bilinear(dim1_og, dim2_og, dim1) if use_bilinear else nn.Sequential(nn.Linear(dim1_og+dim2_og, dim1)) |
|
|
19 |
self.linear_o1 = nn.Sequential(nn.Linear(dim1, dim1), nn.ReLU(), nn.Dropout(p=dropout_rate)) |
|
|
20 |
|
|
|
21 |
self.linear_h2 = nn.Sequential(nn.Linear(dim2_og, dim2), nn.ReLU()) |
|
|
22 |
self.linear_z2 = nn.Bilinear(dim1_og, dim2_og, dim2) if use_bilinear else nn.Sequential(nn.Linear(dim1_og+dim2_og, dim2)) |
|
|
23 |
self.linear_o2 = nn.Sequential(nn.Linear(dim2, dim2), nn.ReLU(), nn.Dropout(p=dropout_rate)) |
|
|
24 |
|
|
|
25 |
self.post_fusion_dropout = nn.Dropout(p=dropout_rate) |
|
|
26 |
self.encoder1 = nn.Sequential(nn.Linear((dim1+1)*(dim2+1), mmhid), nn.ReLU(), nn.Dropout(p=dropout_rate)) |
|
|
27 |
self.encoder2 = nn.Sequential(nn.Linear(mmhid+skip_dim, mmhid), nn.ReLU(), nn.Dropout(p=dropout_rate)) |
|
|
28 |
init_max_weights(self) |
|
|
29 |
|
|
|
30 |
def forward(self, vec1, vec2): |
|
|
31 |
### Gated Multimodal Units |
|
|
32 |
if self.gate1: |
|
|
33 |
h1 = self.linear_h1(vec1) |
|
|
34 |
z1 = self.linear_z1(vec1, vec2) if self.use_bilinear else self.linear_z1(torch.cat((vec1, vec2), dim=1)) |
|
|
35 |
o1 = self.linear_o1(nn.Sigmoid()(z1)*h1) |
|
|
36 |
else: |
|
|
37 |
o1 = self.linear_o1(vec1) |
|
|
38 |
|
|
|
39 |
if self.gate2: |
|
|
40 |
h2 = self.linear_h2(vec2) |
|
|
41 |
z2 = self.linear_z2(vec1, vec2) if self.use_bilinear else self.linear_z2(torch.cat((vec1, vec2), dim=1)) |
|
|
42 |
o2 = self.linear_o2(nn.Sigmoid()(z2)*h2) |
|
|
43 |
else: |
|
|
44 |
o2 = self.linear_o2(vec2) |
|
|
45 |
|
|
|
46 |
### Fusion |
|
|
47 |
o1 = torch.cat((o1, torch.cuda.FloatTensor(o1.shape[0], 1).fill_(1)), 1) |
|
|
48 |
o2 = torch.cat((o2, torch.cuda.FloatTensor(o2.shape[0], 1).fill_(1)), 1) |
|
|
49 |
o12 = torch.bmm(o1.unsqueeze(2), o2.unsqueeze(1)).flatten(start_dim=1) # BATCH_SIZE X 1024 |
|
|
50 |
out = self.post_fusion_dropout(o12) |
|
|
51 |
out = self.encoder1(out) |
|
|
52 |
if self.skip: out = torch.cat((out, o1, o2), 1) |
|
|
53 |
out = self.encoder2(out) |
|
|
54 |
return out |
|
|
55 |
|
|
|
56 |
|
|
|
57 |
class TrilinearFusion_A(nn.Module): |
|
|
58 |
def __init__(self, skip=1, use_bilinear=1, gate1=1, gate2=1, gate3=1, dim1=32, dim2=32, dim3=32, scale_dim1=1, scale_dim2=1, scale_dim3=1, mmhid=96, dropout_rate=0.25): |
|
|
59 |
super(TrilinearFusion_A, self).__init__() |
|
|
60 |
self.skip = skip |
|
|
61 |
self.use_bilinear = use_bilinear |
|
|
62 |
self.gate1 = gate1 |
|
|
63 |
self.gate2 = gate2 |
|
|
64 |
self.gate3 = gate3 |
|
|
65 |
|
|
|
66 |
dim1_og, dim2_og, dim3_og, dim1, dim2, dim3 = dim1, dim2, dim3, dim1//scale_dim1, dim2//scale_dim2, dim3//scale_dim3 |
|
|
67 |
skip_dim = dim1+dim2+dim3+3 if skip else 0 |
|
|
68 |
|
|
|
69 |
### Path |
|
|
70 |
self.linear_h1 = nn.Sequential(nn.Linear(dim1_og, dim1), nn.ReLU()) |
|
|
71 |
self.linear_z1 = nn.Bilinear(dim1_og, dim3_og, dim1) if use_bilinear else nn.Sequential(nn.Linear(dim1_og+dim3_og, dim1)) |
|
|
72 |
self.linear_o1 = nn.Sequential(nn.Linear(dim1, dim1), nn.ReLU(), nn.Dropout(p=dropout_rate)) |
|
|
73 |
|
|
|
74 |
### Graph |
|
|
75 |
self.linear_h2 = nn.Sequential(nn.Linear(dim2_og, dim2), nn.ReLU()) |
|
|
76 |
self.linear_z2 = nn.Bilinear(dim2_og, dim3_og, dim2) if use_bilinear else nn.Sequential(nn.Linear(dim2_og+dim3_og, dim2)) |
|
|
77 |
self.linear_o2 = nn.Sequential(nn.Linear(dim2, dim2), nn.ReLU(), nn.Dropout(p=dropout_rate)) |
|
|
78 |
|
|
|
79 |
### Omic |
|
|
80 |
self.linear_h3 = nn.Sequential(nn.Linear(dim3_og, dim3), nn.ReLU()) |
|
|
81 |
self.linear_z3 = nn.Bilinear(dim1_og, dim3_og, dim3) if use_bilinear else nn.Sequential(nn.Linear(dim1_og+dim3_og, dim3)) |
|
|
82 |
self.linear_o3 = nn.Sequential(nn.Linear(dim3, dim3), nn.ReLU(), nn.Dropout(p=dropout_rate)) |
|
|
83 |
|
|
|
84 |
self.post_fusion_dropout = nn.Dropout(p=0.25) |
|
|
85 |
self.encoder1 = nn.Sequential(nn.Linear((dim1+1)*(dim2+1)*(dim3+1), mmhid), nn.ReLU(), nn.Dropout(p=dropout_rate)) |
|
|
86 |
self.encoder2 = nn.Sequential(nn.Linear(mmhid+skip_dim, mmhid), nn.ReLU(), nn.Dropout(p=dropout_rate)) |
|
|
87 |
|
|
|
88 |
init_max_weights(self) |
|
|
89 |
|
|
|
90 |
def forward(self, vec1, vec2, vec3): |
|
|
91 |
### Gated Multimodal Units |
|
|
92 |
if self.gate1: |
|
|
93 |
h1 = self.linear_h1(vec1) |
|
|
94 |
z1 = self.linear_z1(vec1, vec3) if self.use_bilinear else self.linear_z1(torch.cat((vec1, vec3), dim=1)) # Gate Path with Omic |
|
|
95 |
o1 = self.linear_o1(nn.Sigmoid()(z1)*h1) |
|
|
96 |
else: |
|
|
97 |
o1 = self.linear_o1(vec1) |
|
|
98 |
|
|
|
99 |
if self.gate2: |
|
|
100 |
h2 = self.linear_h2(vec2) |
|
|
101 |
z2 = self.linear_z2(vec2, vec3) if self.use_bilinear else self.linear_z2(torch.cat((vec2, vec3), dim=1)) # Gate Graph with Omic |
|
|
102 |
o2 = self.linear_o2(nn.Sigmoid()(z2)*h2) |
|
|
103 |
else: |
|
|
104 |
o2 = self.linear_o2(vec2) |
|
|
105 |
|
|
|
106 |
if self.gate3: |
|
|
107 |
h3 = self.linear_h3(vec3) |
|
|
108 |
z3 = self.linear_z3(vec1, vec3) if self.use_bilinear else self.linear_z3(torch.cat((vec1, vec3), dim=1)) # Gate Omic With Path |
|
|
109 |
o3 = self.linear_o3(nn.Sigmoid()(z3)*h3) |
|
|
110 |
else: |
|
|
111 |
o3 = self.linear_o3(vec3) |
|
|
112 |
|
|
|
113 |
### Fusion |
|
|
114 |
o1 = torch.cat((o1, torch.cuda.FloatTensor(o1.shape[0], 1).fill_(1)), 1) |
|
|
115 |
o2 = torch.cat((o2, torch.cuda.FloatTensor(o2.shape[0], 1).fill_(1)), 1) |
|
|
116 |
o3 = torch.cat((o3, torch.cuda.FloatTensor(o3.shape[0], 1).fill_(1)), 1) |
|
|
117 |
o12 = torch.bmm(o1.unsqueeze(2), o2.unsqueeze(1)).flatten(start_dim=1) |
|
|
118 |
o123 = torch.bmm(o12.unsqueeze(2), o3.unsqueeze(1)).flatten(start_dim=1) |
|
|
119 |
out = self.post_fusion_dropout(o123) |
|
|
120 |
out = self.encoder1(out) |
|
|
121 |
if self.skip: out = torch.cat((out, o1, o2, o3), 1) |
|
|
122 |
out = self.encoder2(out) |
|
|
123 |
return out |
|
|
124 |
|
|
|
125 |
|
|
|
126 |
class TrilinearFusion_B(nn.Module): |
|
|
127 |
def __init__(self, skip=1, use_bilinear=1, gate1=1, gate2=1, gate3=1, dim1=32, dim2=32, dim3=32, scale_dim1=1, scale_dim2=1, scale_dim3=1, mmhid=96, dropout_rate=0.25): |
|
|
128 |
super(TrilinearFusion_B, self).__init__() |
|
|
129 |
self.skip = skip |
|
|
130 |
self.use_bilinear = use_bilinear |
|
|
131 |
self.gate1 = gate1 |
|
|
132 |
self.gate2 = gate2 |
|
|
133 |
self.gate3 = gate3 |
|
|
134 |
|
|
|
135 |
dim1_og, dim2_og, dim3_og, dim1, dim2, dim3 = dim1, dim2, dim3, dim1//scale_dim1, dim2//scale_dim2, dim3//scale_dim3 |
|
|
136 |
skip_dim = dim1+dim2+dim3+3 if skip else 0 |
|
|
137 |
|
|
|
138 |
### Path |
|
|
139 |
self.linear_h1 = nn.Sequential(nn.Linear(dim1_og, dim1), nn.ReLU()) |
|
|
140 |
self.linear_z1 = nn.Bilinear(dim1_og, dim3_og, dim1) if use_bilinear else nn.Sequential(nn.Linear(dim1_og+dim3_og, dim1)) |
|
|
141 |
self.linear_o1 = nn.Sequential(nn.Linear(dim1, dim1), nn.ReLU(), nn.Dropout(p=dropout_rate)) |
|
|
142 |
|
|
|
143 |
### Graph |
|
|
144 |
self.linear_h2 = nn.Sequential(nn.Linear(dim2_og, dim2), nn.ReLU()) |
|
|
145 |
self.linear_z2 = nn.Bilinear(dim2_og, dim1_og, dim2) if use_bilinear else nn.Sequential(nn.Linear(dim2_og+dim1_og, dim2)) |
|
|
146 |
self.linear_o2 = nn.Sequential(nn.Linear(dim2, dim2), nn.ReLU(), nn.Dropout(p=dropout_rate)) |
|
|
147 |
|
|
|
148 |
### Omic |
|
|
149 |
self.linear_h3 = nn.Sequential(nn.Linear(dim3_og, dim3), nn.ReLU()) |
|
|
150 |
self.linear_z3 = nn.Bilinear(dim1_og, dim3_og, dim3) if use_bilinear else nn.Sequential(nn.Linear(dim1_og+dim3_og, dim3)) |
|
|
151 |
self.linear_o3 = nn.Sequential(nn.Linear(dim3, dim3), nn.ReLU(), nn.Dropout(p=dropout_rate)) |
|
|
152 |
|
|
|
153 |
self.post_fusion_dropout = nn.Dropout(p=0.25) |
|
|
154 |
self.encoder1 = nn.Sequential(nn.Linear((dim1+1)*(dim2+1)*(dim3+1), mmhid), nn.ReLU(), nn.Dropout(p=dropout_rate)) |
|
|
155 |
self.encoder2 = nn.Sequential(nn.Linear(mmhid+skip_dim, mmhid), nn.ReLU(), nn.Dropout(p=dropout_rate)) |
|
|
156 |
|
|
|
157 |
init_max_weights(self) |
|
|
158 |
|
|
|
159 |
def forward(self, vec1, vec2, vec3): |
|
|
160 |
### Gated Multimodal Units |
|
|
161 |
if self.gate1: |
|
|
162 |
h1 = self.linear_h1(vec1) |
|
|
163 |
z1 = self.linear_z1(vec1, vec3) if self.use_bilinear else self.linear_z1(torch.cat((vec1, vec3), dim=1)) # Gate Path with Omic |
|
|
164 |
o1 = self.linear_o1(nn.Sigmoid()(z1)*h1) |
|
|
165 |
else: |
|
|
166 |
o1 = self.linear_o1(vec1) |
|
|
167 |
|
|
|
168 |
if self.gate2: |
|
|
169 |
h2 = self.linear_h2(vec2) |
|
|
170 |
z2 = self.linear_z2(vec2, vec1) if self.use_bilinear else self.linear_z2(torch.cat((vec2, vec1), dim=1)) # Gate Graph with Omic |
|
|
171 |
o2 = self.linear_o2(nn.Sigmoid()(z2)*h2) |
|
|
172 |
else: |
|
|
173 |
o2 = self.linear_o2(vec2) |
|
|
174 |
|
|
|
175 |
if self.gate3: |
|
|
176 |
h3 = self.linear_h3(vec3) |
|
|
177 |
z3 = self.linear_z3(vec1, vec3) if self.use_bilinear else self.linear_z3(torch.cat((vec1, vec3), dim=1)) # Gate Omic With Path |
|
|
178 |
o3 = self.linear_o3(nn.Sigmoid()(z3)*h3) |
|
|
179 |
else: |
|
|
180 |
o3 = self.linear_o3(vec3) |
|
|
181 |
|
|
|
182 |
### Fusion |
|
|
183 |
o1 = torch.cat((o1, torch.cuda.FloatTensor(o1.shape[0], 1).fill_(1)), 1) |
|
|
184 |
o2 = torch.cat((o2, torch.cuda.FloatTensor(o2.shape[0], 1).fill_(1)), 1) |
|
|
185 |
o3 = torch.cat((o3, torch.cuda.FloatTensor(o3.shape[0], 1).fill_(1)), 1) |
|
|
186 |
o12 = torch.bmm(o1.unsqueeze(2), o2.unsqueeze(1)).flatten(start_dim=1) |
|
|
187 |
o123 = torch.bmm(o12.unsqueeze(2), o3.unsqueeze(1)).flatten(start_dim=1) |
|
|
188 |
out = self.post_fusion_dropout(o123) |
|
|
189 |
out = self.encoder1(out) |
|
|
190 |
if self.skip: out = torch.cat((out, o1, o2, o3), 1) |
|
|
191 |
out = self.encoder2(out) |
|
|
192 |
return out |