Switch to unified view

a b/CellGraph/resnet_custom.py
1
# modified from Pytorch official resnet.py
2
# oops
3
import torch.nn as nn
4
import torch.utils.model_zoo as model_zoo
5
import torch
6
from torchsummary import summary
7
import torch.nn.functional as F
8
9
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
10
           'resnet152']
11
12
13
model_urls = {
14
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
15
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
16
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
17
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
18
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
19
}
20
21
22
def conv3x3(in_planes, out_planes, stride=1):
23
    """3x3 convolution with padding"""
24
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
25
                     padding=1, bias=False)
26
27
28
class BasicBlock(nn.Module):
29
    expansion = 1
30
31
    def __init__(self, inplanes, planes, stride=1, downsample=None):
32
        super(BasicBlock, self).__init__()
33
        self.conv1 = conv3x3(inplanes, planes, stride)
34
        # self.bn1 = nn.BatchNorm2d(planes)
35
        self.relu = nn.ReLU(inplace=True)
36
        self.conv2 = conv3x3(planes, planes)
37
        # self.bn2 = nn.BatchNorm2d(planes)
38
        self.downsample = downsample
39
        self.stride = stride
40
41
    def forward(self, x):
42
        residual = x
43
44
        out = self.conv1(x)
45
        # out = self.bn1(out)
46
        out = self.relu(out)
47
48
        out = self.conv2(out)
49
        # out = self.bn2(out)
50
51
        if self.downsample is not None:
52
            residual = self.downsample(x)
53
54
        out += residual
55
        out = self.relu(out)
56
57
        return out
58
59
60
class Bottleneck(nn.Module):
61
    expansion = 4
62
63
    def __init__(self, inplanes, planes, stride=1, downsample=None):
64
        super(Bottleneck, self).__init__()
65
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
66
        # self.bn1 = nn.BatchNorm2d(planes)
67
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
68
                               padding=1, bias=False)
69
        # self.bn2 = nn.BatchNorm2d(planes)
70
        self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
71
        # self.bn3 = nn.BatchNorm2d(planes * self.expansion)
72
        self.relu = nn.ReLU(inplace=True)
73
        self.downsample = downsample
74
        self.stride = stride
75
76
    def forward(self, x):
77
        residual = x
78
79
        out = self.conv1(x)
80
        # out = self.bn1(out)
81
        out = self.relu(out)
82
83
        out = self.conv2(out)
84
        # out = self.bn2(out)
85
        out = self.relu(out)
86
87
        out = self.conv3(out)
88
        # out = self.bn3(out)
89
90
        if self.downsample is not None:
91
            residual = self.downsample(x)
92
93
        out += residual
94
        out = self.relu(out)
95
96
        return out
97
98
class LayerNorm(nn.Module):
99
    def __init__(self):
100
        super(LayerNorm, self).__init__()
101
        
102
    def forward(self, x):
103
        return F.layer_norm(x, x.size()[1:])
104
105
class Bottleneck_LN(nn.Module):
106
    expansion = 4
107
108
    def __init__(self, inplanes, planes, stride=1, downsample=None):
109
        super(Bottleneck_LN, self).__init__()
110
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
111
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
112
                               padding=1, bias=False)
113
        self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
114
        self.relu = nn.ReLU(inplace=True)
115
        self.ln = LayerNorm()
116
        self.downsample = downsample
117
        self.stride = stride
118
119
    def forward(self, x):
120
        residual = x
121
122
        out = self.conv1(x)
123
        # out = F.layer_norm(out, out.size()[1:])
124
        out = self.ln(out)
125
        out = self.relu(out)
126
127
        out = self.conv2(out)
128
        # out = F.layer_norm(out, out.size()[1:])
129
        out = self.ln(out)
130
        out = self.relu(out)
131
132
        out = self.conv3(out)
133
        # out = F.layer_norm(out, out.size()[1:])
134
        out = self.ln(out)
135
136
        if self.downsample is not None:
137
            residual = self.downsample(x)
138
            # residual = F.layer_norm(residual, residual.size()[1:])
139
            residual = self.ln(residual)
140
141
        out += residual
142
        out = self.relu(out)
143
144
        return out
145
146
147
class ResNet(nn.Module):
148
149
    def __init__(self, block, layers
150
                 # num_classes=1000
151
                 ):
152
        self.inplanes = 64
153
        super(ResNet, self).__init__()
154
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
155
                               bias=False)
156
        # self.bn1 = nn.BatchNorm2d(64)
157
        self.relu = nn.ReLU(inplace=True)
158
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
159
        self.layer1 = self._make_layer(block, 64, layers[0])
160
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
161
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
162
        # self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
163
        self.avgpool = nn.AdaptiveAvgPool2d(1) # was 7, if have layer4
164
        # remove the final fc
165
        # self.fc = nn.Linear(512 * block.expansion, num_classes)
166
167
        for m in self.modules():
168
            if isinstance(m, nn.Conv2d):
169
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
170
            elif isinstance(m, nn.BatchNorm2d):
171
                nn.init.constant_(m.weight, 1)
172
                nn.init.constant_(m.bias, 0)
173
174
    def _make_layer(self, block, planes, blocks, stride=1):
175
        downsample = None
176
        if stride != 1 or self.inplanes != planes * block.expansion:
177
            downsample = nn.Sequential(
178
                nn.Conv2d(self.inplanes, planes * block.expansion,
179
                          kernel_size=1, stride=stride, bias=False),
180
                # nn.BatchNorm2d(planes * block.expansion),
181
            )
182
183
        layers = []
184
        layers.append(block(self.inplanes, planes, stride, downsample))
185
        self.inplanes = planes * block.expansion
186
        for i in range(1, blocks):
187
            layers.append(block(self.inplanes, planes))
188
189
        return nn.Sequential(*layers)
190
191
    def forward(self, x):
192
        x = self.conv1(x)
193
        # x = self.bn1(x)
194
        x = self.relu(x)
195
        x = self.maxpool(x)
196
197
        x = self.layer1(x)
198
        x = self.layer2(x)
199
        x = self.layer3(x)
200
        # x = self.layer4(x)
201
202
        x = self.avgpool(x)
203
        x = x.view(x.size(0), -1)
204
        # x = self.fc(x)
205
206
        return x
207
208
209
def resnet18(pretrained=False, **kwargs):
210
    """Constructs a ResNet-18 model.
211
    Args:
212
        pretrained (bool): If True, returns a model pre-trained on ImageNet
213
    """
214
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
215
    if pretrained:
216
        model = neq_load(model, 'resnet18')
217
        # model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
218
    return model
219
220
221
def resnet34(pretrained=False, **kwargs):
222
    """Constructs a ResNet-34 model.
223
    Args:
224
        pretrained (bool): If True, returns a model pre-trained on ImageNet
225
    """
226
    model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
227
    if pretrained:
228
        model = neq_load(model, 'resnet34')
229
        # model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
230
    return model
231
232
233
def resnet50(pretrained=False, **kwargs):
234
    """Constructs a ResNet-50 model.
235
    Args:
236
        pretrained (bool): If True, returns a model pre-trained on ImageNet
237
    """
238
    model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
239
    if pretrained:
240
        model = neq_load(model, 'resnet50')
241
        # model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
242
    return model
243
244
def resnet50_ln(pretrained=False):
245
    """Constructs a ResNet-50 model.
246
    Args:
247
        pretrained (bool): If True, returns a model pre-trained on ImageNet
248
    """
249
    model = ResNet(Bottleneck_LN, [3, 4, 6, 3], **kwargs)
250
    
251
    if pretrained:
252
        model = neq_load(model, 'resnet50')
253
        # model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
254
    return model
255
256
257
def resnet101(pretrained=False, **kwargs):
258
    """Constructs a ResNet-101 model.
259
    Args:
260
        pretrained (bool): If True, returns a model pre-trained on ImageNet
261
    """
262
    model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
263
    if pretrained:
264
        model = neq_load(model, 'resnet101')
265
        # model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
266
    return model
267
268
def resnet101_wide(pretrained=False, ln=False):
269
    """Constructs a ResNet-101 model.
270
    Args:
271
        pretrained (bool): If True, returns a model pre-trained on ImageNet
272
    """
273
    if ln:
274
        model = ResNet_Wide_LN(Bottleneck_LN, Bottleneck_Wide_LN, [3, 4, 46, 3])
275
    else:
276
        model = ResNet_Wide(Bottleneck, Bottleneck_Wide, [3, 4, 46, 3])
277
    
278
    if pretrained:
279
        model = neq_load(model, 'resnet101')
280
        # model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
281
    return model
282
283
284
def resnet152(pretrained=False, **kwargs):
285
    """Constructs a ResNet-152 model.
286
    Args:
287
        pretrained (bool): If True, returns a model pre-trained on ImageNet
288
    """
289
    model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
290
    if pretrained:
291
        model = neq_load(model, 'resnet152')
292
        # model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
293
    return model
294
295
296
def neq_load(model, name):
297
    # load pre-trained model in a not-equal way
298
    # when new model has been modified
299
    pretrained_dict = model_zoo.load_url(model_urls[name])
300
    model_dict = model.state_dict()
301
    pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
302
    model_dict.update(pretrained_dict)
303
    model.load_state_dict(model_dict)
304
    return model
305
306
if __name__ == '__main__':
307
    # model = resnet50_wide(pretrained = False)
308
    model = resnet50_wide(ln=True)
309
    print(model)
310
    # summary(model, (3,64,64))
311
    x = torch.rand(49, 3, 64, 64)
312
    x = model(x).squeeze()
313
    print(x.shape)
314
    print(len(x.shape))
315
316