[4d48b1]: / utils / core_utils.py

Download this file

416 lines (341 with data), 17.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
from argparse import Namespace
from collections import OrderedDict
import os
import pickle
from lifelines.utils import concordance_index
import numpy as np
from sksurv.metrics import concordance_index_censored
import torch
from datasets.dataset_generic import save_splits
from models.model_genomic import SNN
from models.model_set_mil import MIL_Sum_FC_surv, MIL_Attention_FC_surv, MIL_Cluster_FC_surv
from models.model_coattn import MCAT_Surv
from models.model_porpoise import PorpoiseMMF, PorpoiseAMIL, PorpoiseMMF_Fast
from utils.utils import *
from utils.loss_func import NLLSurvLoss
from utils.coattn_train_utils import *
from utils.cluster_train_utils import *
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, warmup=5, patience=15, stop_epoch=20, verbose=False):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 20
stop_epoch (int): Earliest epoch possible for stopping
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
"""
self.warmup = warmup
self.patience = patience
self.stop_epoch = stop_epoch
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
def __call__(self, epoch, val_loss, model, ckpt_name = 'checkpoint.pt'):
score = -val_loss
if epoch < self.warmup:
pass
elif self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss, model, ckpt_name)
elif score < self.best_score:
self.counter += 1
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience and epoch > self.stop_epoch:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss, model, ckpt_name)
self.counter = 0
def save_checkpoint(self, val_loss, model, ckpt_name):
'''Saves model when validation loss decrease.'''
if self.verbose:
print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
torch.save(model.state_dict(), ckpt_name)
self.val_loss_min = val_loss
class Monitor_CIndex:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 20
stop_epoch (int): Earliest epoch possible for stopping
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
"""
self.best_score = None
def __call__(self, val_cindex, model, ckpt_name:str='checkpoint.pt'):
score = val_cindex
if self.best_score is None:
self.best_score = score
self.save_checkpoint(model, ckpt_name)
elif score > self.best_score:
self.best_score = score
self.save_checkpoint(model, ckpt_name)
else:
pass
def save_checkpoint(self, model, ckpt_name):
'''Saves model when validation loss decrease.'''
torch.save(model.state_dict(), ckpt_name)
def train(datasets: tuple, cur: int, args: Namespace):
"""
train for a single fold
"""
print('\nTraining Fold {}!'.format(cur))
writer_dir = os.path.join(args.results_dir, str(cur))
if not os.path.isdir(writer_dir):
os.mkdir(writer_dir)
if args.log_data:
from tensorboardX import SummaryWriter
writer = SummaryWriter(writer_dir, flush_secs=15)
else:
writer = None
print('\nInit train/val/test splits...', end=' ')
train_split, val_split = datasets
save_splits(datasets, ['train', 'val'], os.path.join(args.results_dir, 'splits_{}.csv'.format(cur)))
print('Done!')
print("Training on {} samples".format(len(train_split)))
print("Validating on {} samples".format(len(val_split)))
print('\nInit loss function...', end=' ')
if args.task_type == 'survival':
if args.bag_loss == 'ce_surv':
loss_fn = CrossEntropySurvLoss(alpha=args.alpha_surv)
elif args.bag_loss == 'nll_surv':
loss_fn = NLLSurvLoss(alpha=args.alpha_surv)
else:
raise NotImplementedError
else:
raise NotImplementedError
if args.reg_type == 'omic':
reg_fn = l1_reg_omic
elif args.reg_type == 'pathomic':
reg_fn = l1_reg_modules
else:
reg_fn = None
print('Done!')
print('\nInit Model...', end=' ')
args.fusion = None if args.fusion == 'None' else args.fusion
if args.model_type == 'porpoise_mmf':
model_dict = {'omic_input_dim': args.omic_input_dim, 'fusion': args.fusion, 'n_classes': args.n_classes,
'gate_path': args.gate_path, 'gate_omic': args.gate_omic, 'scale_dim1': args.scale_dim1, 'scale_dim2': args.scale_dim2,
'skip': args.skip, 'dropinput': args.dropinput, 'path_input_dim': args.path_input_dim, 'use_mlp': args.use_mlp,
}
model = PorpoiseMMF(**model_dict)
elif args.model_type == 'porpoise_amil':
model_dict = {'n_classes': args.n_classes}
model = PorpoiseAMIL(**model_dict)
elif args.model_type =='snn':
model_dict = {'omic_input_dim': args.omic_input_dim, 'model_size_omic': args.model_size_omic, 'n_classes': args.n_classes}
model = SNN(**model_dict)
elif args.model_type == 'deepset':
model_dict = {'omic_input_dim': args.omic_input_dim, 'fusion': args.fusion, 'n_classes': args.n_classes}
model = MIL_Sum_FC_surv(**model_dict)
elif args.model_type =='amil':
model_dict = {'omic_input_dim': args.omic_input_dim, 'fusion': args.fusion, 'n_classes': args.n_classes}
model = MIL_Attention_FC_surv(**model_dict)
elif args.model_type == 'mi_fcn':
model_dict = {'omic_input_dim': args.omic_input_dim, 'fusion': args.fusion, 'num_clusters': 10, 'n_classes': args.n_classes}
model = MIL_Cluster_FC_surv(**model_dict)
elif args.model_type == 'mcat':
model_dict = {'fusion': args.fusion, 'omic_sizes': args.omic_sizes, 'n_classes': args.n_classes}
model = MCAT_Surv(**model_dict)
else:
raise NotImplementedError
if hasattr(model, "relocate"):
model.relocate()
else:
model = model.to(torch.device('cuda'))
print('Done!')
print_network(model)
print('\nInit optimizer ...', end=' ')
optimizer = get_optim(model, args)
print('Done!')
print('\nInit Loaders...', end=' ')
train_loader = get_split_loader(train_split, training=True, testing = args.testing,
weighted = args.weighted_sample, mode=args.mode, batch_size=args.batch_size)
val_loader = get_split_loader(val_split, testing = args.testing, mode=args.mode, batch_size=args.batch_size)
print('Done!')
print('\nSetup EarlyStopping...', end=' ')
if args.early_stopping:
early_stopping = EarlyStopping(warmup=0, patience=10, stop_epoch=20, verbose = True)
else:
early_stopping = None
print('\nSetup Validation C-Index Monitor...', end=' ')
monitor_cindex = Monitor_CIndex()
print('Done!')
for epoch in range(args.max_epochs):
if args.task_type == 'survival':
if args.mode == 'coattn':
train_loop_survival_coattn(epoch, model, train_loader, optimizer, args.n_classes, writer, loss_fn, reg_fn, args.lambda_reg, args.gc)
stop = validate_survival_coattn(cur, epoch, model, val_loader, args.n_classes, early_stopping, monitor_cindex, writer, loss_fn, reg_fn, args.lambda_reg, args.results_dir)
else:
train_loop_survival(epoch, model, train_loader, optimizer, args.n_classes, writer, loss_fn, reg_fn, args.lambda_reg, args.gc)
stop = validate_survival(cur, epoch, model, val_loader, args.n_classes, early_stopping, monitor_cindex, writer, loss_fn, reg_fn, args.lambda_reg, args.results_dir)
torch.save(model.state_dict(), os.path.join(args.results_dir, "s_{}_checkpoint.pt".format(cur)))
model.load_state_dict(torch.load(os.path.join(args.results_dir, "s_{}_checkpoint.pt".format(cur))))
if args.mode == 'coattn':
results_val_dict, val_cindex = summary_survival_coattn(model, val_loader, args.n_classes)
else:
results_val_dict, val_cindex = summary_survival(model, val_loader, args.n_classes)
print('Val c-Index: {:.4f}'.format(val_cindex))
writer.close()
return results_val_dict, val_cindex
def train_loop_survival(epoch, model, loader, optimizer, n_classes, writer=None, loss_fn=None, reg_fn=None, lambda_reg=0., gc=16):
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.train()
train_loss_surv, train_loss = 0., 0.
print('\n')
#all_risk_scores = np.zeros((len(loader)))
#all_censorships = np.zeros((len(loader)))
#all_event_times = np.zeros((len(loader)))
all_risk_scores = []
all_censorships = []
all_event_times = []
for batch_idx, (data_WSI, data_omic, y_disc, event_time, censor) in enumerate(loader):
data_WSI, data_omic = data_WSI.to(device), data_omic.to(device)
y_disc = y_disc.to(device)
event_time = event_time.to(device)
censor = censor.to(device)
#pdb.set_trace()
h = model(x_path=data_WSI, x_omic=data_omic) # return hazards, S, Y_hat, A_raw, results_dict
if not isinstance(h, tuple):
loss = loss_fn(h=h, y=y_disc, t=event_time, c=censor)
loss_value = loss.item()
else:
h_path, h_omic, h_mm = h
loss = 0.5*loss_fn(h=h_mm, y=y_disc, t=event_time, c=censor)
loss += 0.25*loss_fn(h=h_path, y=y_disc, t=event_time, c=censor)
loss += 0.25*loss_fn(h=h_omic, y=y_disc, t=event_time, c=censor)
loss_value = loss.item()
h = h_mm
if reg_fn is None:
loss_reg = 0
else:
loss_reg = reg_fn(model) * lambda_reg
if isinstance(loss_fn, NLLSurvLoss):
hazards = torch.sigmoid(h)
survival = torch.cumprod(1 - hazards, dim=1)
risk = -torch.sum(survival, dim=1).detach().cpu().numpy()
else:
risk = h.detach().cpu().numpy().squeeze()
#pdb.set_trace()
#all_risk_scores[batch_idx] = risk
#all_censorships[batch_idx] = censor.detach().cpu().item()
#all_event_times[batch_idx] = event_time
all_risk_scores.append(risk)
all_censorships.append(censor.detach().cpu().numpy())
all_event_times.append(event_time.detach().cpu().numpy())
#pdb.set_trace()
train_loss_surv += loss_value
train_loss += loss_value + loss_reg
if y_disc.shape[0] == 1 and (batch_idx + 1) % 100 == 0:
print('batch {}, loss: {:.4f}, label: {}, event_time: {:.4f}, risk: {:.4f}, bag_size: {}'.format(batch_idx, loss_value + loss_reg, y_disc.detach().cpu().item(), float(event_time.detach().cpu().item()), float(risk), data_WSI.size(0)))
elif y_disc.shape[0] != 1 and (batch_idx + 1) % 5 == 0:
print('batch {}, loss: {:.4f}, label: {}, event_time: {:.4f}, risk: {:.4f}, bag_size: {}'.format(batch_idx, loss_value + loss_reg, y_disc.detach().cpu()[0], float(event_time.detach().cpu()[0]), float(risk[0]), data_WSI.size(0)))
# backward pass
loss = loss / gc + loss_reg
loss.backward()
if (batch_idx + 1) % gc == 0:
optimizer.step()
optimizer.zero_grad()
# calculate loss and error for epoch
train_loss_surv /= len(loader)
train_loss /= len(loader)
#pdb.set_trace()
all_risk_scores = np.concatenate(all_risk_scores)
all_censorships = np.concatenate(all_censorships)
all_event_times = np.concatenate(all_event_times)
# c_index = concordance_index(all_event_times, all_risk_scores, event_observed=1-all_censorships)
c_index = concordance_index_censored((1-all_censorships).astype(bool), all_event_times, all_risk_scores, tied_tol=1e-08)[0]
print('Epoch: {}, train_loss_surv: {:.4f}, train_loss: {:.4f}, train_c_index: {:.4f}'.format(epoch, train_loss_surv, train_loss, c_index))
if writer:
writer.add_scalar('train/loss_surv', train_loss_surv, epoch)
writer.add_scalar('train/loss', train_loss, epoch)
writer.add_scalar('train/c_index', c_index, epoch)
def validate_survival(cur, epoch, model, loader, n_classes, early_stopping=None, monitor_cindex=None, writer=None, loss_fn=None, reg_fn=None, lambda_reg=0., results_dir=None):
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.eval()
val_loss_surv, val_loss = 0., 0.
all_risk_scores = np.zeros((len(loader)))
all_censorships = np.zeros((len(loader)))
all_event_times = np.zeros((len(loader)))
for batch_idx, (data_WSI, data_omic, y_disc, event_time, censor) in enumerate(loader):
data_WSI, data_omic = data_WSI.to(device), data_omic.to(device)
y_disc = y_disc.to(device)
event_time = event_time.to(device)
censor = censor.to(device)
with torch.no_grad():
h = model(x_path=data_WSI, x_omic=data_omic) # return hazards, S, Y_hat, A_raw, results_dict
if not isinstance(h, tuple):
loss = loss_fn(h=h, y=y_disc, t=event_time, c=censor)
loss_value = loss.item()
else:
h_path, h_omic, h_mm = h
loss = 0.5*loss_fn(h=h_mm, y=y_disc, t=event_time, c=censor)
loss += 0.25*loss_fn(h=h_path, y=y_disc, t=event_time, c=censor)
loss += 0.25*loss_fn(h=h_omic, y=y_disc, t=event_time, c=censor)
loss_value = loss.item()
h = h_mm
if reg_fn is None:
loss_reg = 0
else:
loss_reg = reg_fn(model) * lambda_reg
if isinstance(loss_fn, NLLSurvLoss):
hazards = torch.sigmoid(h)
survival = torch.cumprod(1 - hazards, dim=1)
risk = -torch.sum(survival, dim=1).detach().cpu().numpy()
else:
risk = h.detach().cpu().numpy()
all_risk_scores[batch_idx] = risk
all_censorships[batch_idx] = censor.detach().cpu().numpy()
all_event_times[batch_idx] = event_time.detach().cpu().numpy()
val_loss_surv += loss_value
val_loss += loss_value + loss_reg
val_loss_surv /= len(loader)
val_loss /= len(loader)
c_index = concordance_index_censored((1-all_censorships).astype(bool), all_event_times, all_risk_scores, tied_tol=1e-08)[0]
if writer:
writer.add_scalar('val/loss_surv', val_loss_surv, epoch)
writer.add_scalar('val/loss', val_loss, epoch)
writer.add_scalar('val/c-index', c_index, epoch)
if early_stopping:
assert results_dir
early_stopping(epoch, val_loss_surv, model, ckpt_name=os.path.join(results_dir, "s_{}_minloss_checkpoint.pt".format(cur)))
if early_stopping.early_stop:
print("Early stopping")
return True
return False
def summary_survival(model, loader, n_classes):
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.eval()
test_loss = 0.
all_risk_scores = np.zeros((len(loader)))
all_censorships = np.zeros((len(loader)))
all_event_times = np.zeros((len(loader)))
slide_ids = loader.dataset.slide_data['slide_id']
patient_results = {}
for batch_idx, (data_WSI, data_omic, y_disc, event_time, censor) in enumerate(loader):
data_WSI, data_omic = data_WSI.to(device), data_omic.to(device)
slide_id = slide_ids.iloc[batch_idx]
with torch.no_grad():
h = model(x_path=data_WSI, x_omic=data_omic)
if isinstance(h, tuple):
h = h[2]
if h.shape[1] > 1:
hazards = torch.sigmoid(h)
survival = torch.cumprod(1 - hazards, dim=1)
risk = -torch.sum(survival, dim=1).detach().cpu().numpy()
else:
risk = h.detach().cpu().numpy().squeeze()
event_time = np.asscalar(event_time)
censor = np.asscalar(censor)
all_risk_scores[batch_idx] = risk
all_censorships[batch_idx] = censor
all_event_times[batch_idx] = event_time
patient_results.update({slide_id: {'slide_id': np.array(slide_id), 'risk': risk, 'disc_label': y_disc.item(), 'survival': event_time, 'censorship': censor}})
c_index = concordance_index_censored((1-all_censorships).astype(bool), all_event_times, all_risk_scores, tied_tol=1e-08)[0]
return patient_results, c_index