[4d48b1]: / utils / coattn_train_utils.py

Download this file

170 lines (132 with data), 7.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import numpy as np
import torch
import pickle
from utils.utils import *
import os
from collections import OrderedDict
from argparse import Namespace
from lifelines.utils import concordance_index
from sksurv.metrics import concordance_index_censored
def train_loop_survival_coattn(epoch, model, loader, optimizer, n_classes, writer=None, loss_fn=None, reg_fn=None, lambda_reg=0., gc=16):
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.train()
train_loss_surv, train_loss = 0., 0.
print('\n')
all_risk_scores = np.zeros((len(loader)))
all_censorships = np.zeros((len(loader)))
all_event_times = np.zeros((len(loader)))
for batch_idx, (data_WSI, data_omic1, data_omic2, data_omic3, data_omic4, data_omic5, data_omic6, label, event_time, c) in enumerate(loader):
data_WSI = data_WSI.to(device)
data_omic1 = data_omic1.type(torch.FloatTensor).to(device)
data_omic2 = data_omic2.type(torch.FloatTensor).to(device)
data_omic3 = data_omic3.type(torch.FloatTensor).to(device)
data_omic4 = data_omic4.type(torch.FloatTensor).to(device)
data_omic5 = data_omic5.type(torch.FloatTensor).to(device)
data_omic6 = data_omic6.type(torch.FloatTensor).to(device)
label = label.type(torch.LongTensor).to(device)
c = c.type(torch.FloatTensor).to(device)
hazards, S, Y_hat, A = model(x_path=data_WSI, x_omic1=data_omic1, x_omic2=data_omic2, x_omic3=data_omic3, x_omic4=data_omic4, x_omic5=data_omic5, x_omic6=data_omic6)
loss = loss_fn(hazards=hazards, S=S, Y=label, c=c)
loss_value = loss.item()
if reg_fn is None:
loss_reg = 0
else:
loss_reg = reg_fn(model) * lambda_reg
risk = -torch.sum(S, dim=1).detach().cpu().numpy()
all_risk_scores[batch_idx] = risk
all_censorships[batch_idx] = c.item()
all_event_times[batch_idx] = event_time
train_loss_surv += loss_value
train_loss += loss_value + loss_reg
if (batch_idx + 1) % 100 == 0:
print('batch {}, loss: {:.4f}, label: {}, event_time: {:.4f}, risk: {:.4f}, bag_size:'.format(batch_idx, loss_value + loss_reg, label.item(), float(event_time), float(risk)))
loss = loss / gc + loss_reg
loss.backward()
if (batch_idx + 1) % gc == 0:
optimizer.step()
optimizer.zero_grad()
# calculate loss and error for epoch
train_loss_surv /= len(loader)
train_loss /= len(loader)
c_index = concordance_index_censored((1-all_censorships).astype(bool), all_event_times, all_risk_scores, tied_tol=1e-08)[0]
print('Epoch: {}, train_loss_surv: {:.4f}, train_loss: {:.4f}, train_c_index: {:.4f}'.format(epoch, train_loss_surv, train_loss, c_index))
if writer:
writer.add_scalar('train/loss_surv', train_loss_surv, epoch)
writer.add_scalar('train/loss', train_loss, epoch)
writer.add_scalar('train/c_index', c_index, epoch)
def validate_survival_coattn(cur, epoch, model, loader, n_classes, early_stopping=None, monitor_cindex=None, writer=None, loss_fn=None, reg_fn=None, lambda_reg=0., results_dir=None):
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.eval()
val_loss_surv, val_loss = 0., 0.
all_risk_scores = np.zeros((len(loader)))
all_censorships = np.zeros((len(loader)))
all_event_times = np.zeros((len(loader)))
for batch_idx, (data_WSI, data_omic1, data_omic2, data_omic3, data_omic4, data_omic5, data_omic6, label, event_time, c) in enumerate(loader):
data_WSI = data_WSI.to(device)
data_omic1 = data_omic1.type(torch.FloatTensor).to(device)
data_omic2 = data_omic2.type(torch.FloatTensor).to(device)
data_omic3 = data_omic3.type(torch.FloatTensor).to(device)
data_omic4 = data_omic4.type(torch.FloatTensor).to(device)
data_omic5 = data_omic5.type(torch.FloatTensor).to(device)
data_omic6 = data_omic6.type(torch.FloatTensor).to(device)
label = label.type(torch.LongTensor).to(device)
c = c.type(torch.FloatTensor).to(device)
with torch.no_grad():
hazards, S, Y_hat, A = model(x_path=data_WSI, x_omic1=data_omic1, x_omic2=data_omic2, x_omic3=data_omic3, x_omic4=data_omic4, x_omic5=data_omic5, x_omic6=data_omic6) # return hazards, S, Y_hat, A_raw, results_dict
loss = loss_fn(hazards=hazards, S=S, Y=label, c=c, alpha=0)
loss_value = loss.item()
if reg_fn is None:
loss_reg = 0
else:
loss_reg = reg_fn(model) * lambda_reg
risk = -torch.sum(S, dim=1).cpu().numpy()
all_risk_scores[batch_idx] = risk
all_censorships[batch_idx] = c.cpu().numpy()
all_event_times[batch_idx] = event_time
val_loss_surv += loss_value
val_loss += loss_value + loss_reg
val_loss_surv /= len(loader)
val_loss /= len(loader)
c_index = concordance_index_censored((1-all_censorships).astype(bool), all_event_times, all_risk_scores, tied_tol=1e-08)[0]
if writer:
writer.add_scalar('val/loss_surv', val_loss_surv, epoch)
writer.add_scalar('val/loss', val_loss, epoch)
writer.add_scalar('val/c-index', c_index, epoch)
if early_stopping:
assert results_dir
early_stopping(epoch, val_loss_surv, model, ckpt_name=os.path.join(results_dir, "s_{}_minloss_checkpoint.pt".format(cur)))
if early_stopping.early_stop:
print("Early stopping")
return True
return False
def summary_survival_coattn(model, loader, n_classes):
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.eval()
test_loss = 0.
all_risk_scores = np.zeros((len(loader)))
all_censorships = np.zeros((len(loader)))
all_event_times = np.zeros((len(loader)))
slide_ids = loader.dataset.slide_data['slide_id']
patient_results = {}
for batch_idx, (data_WSI, data_omic1, data_omic2, data_omic3, data_omic4, data_omic5, data_omic6, label, event_time, c) in enumerate(loader):
data_WSI = data_WSI.to(device)
data_omic1 = data_omic1.type(torch.FloatTensor).to(device)
data_omic2 = data_omic2.type(torch.FloatTensor).to(device)
data_omic3 = data_omic3.type(torch.FloatTensor).to(device)
data_omic4 = data_omic4.type(torch.FloatTensor).to(device)
data_omic5 = data_omic5.type(torch.FloatTensor).to(device)
data_omic6 = data_omic6.type(torch.FloatTensor).to(device)
label = label.type(torch.LongTensor).to(device)
c = c.type(torch.FloatTensor).to(device)
slide_id = slide_ids.iloc[batch_idx]
with torch.no_grad():
hazards, survival, Y_hat, A = model(x_path=data_WSI, x_omic1=data_omic1, x_omic2=data_omic2, x_omic3=data_omic3, x_omic4=data_omic4, x_omic5=data_omic5, x_omic6=data_omic6) # return hazards, S, Y_hat, A_raw, results_dict
risk = np.asscalar(-torch.sum(survival, dim=1).cpu().numpy())
event_time = np.asscalar(event_time)
c = np.asscalar(c)
all_risk_scores[batch_idx] = risk
all_censorships[batch_idx] = c
all_event_times[batch_idx] = event_time
patient_results.update({slide_id: {'slide_id': np.array(slide_id), 'risk': risk, 'disc_label': label.item(), 'survival': event_time, 'censorship': c}})
c_index = concordance_index_censored((1-all_censorships).astype(bool), all_event_times, all_risk_scores, tied_tol=1e-08)[0]
return patient_results, c_index