|
a |
|
b/utils/loss_func.py |
|
|
1 |
import torch |
|
|
2 |
import torch.nn as nn |
|
|
3 |
import numpy as np |
|
|
4 |
import torch |
|
|
5 |
import torch.nn.functional as F |
|
|
6 |
|
|
|
7 |
|
|
|
8 |
class NLLSurvLoss(nn.Module): |
|
|
9 |
""" |
|
|
10 |
The negative log-likelihood loss function for the discrete time to event model (Zadeh and Schmid, 2020). |
|
|
11 |
Code borrowed from https://github.com/mahmoodlab/Patch-GCN/blob/master/utils/utils.py |
|
|
12 |
Parameters |
|
|
13 |
---------- |
|
|
14 |
alpha: float |
|
|
15 |
TODO: document |
|
|
16 |
eps: float |
|
|
17 |
Numerical constant; lower bound to avoid taking logs of tiny numbers. |
|
|
18 |
reduction: str |
|
|
19 |
Do we sum or average the loss function over the batches. Must be one of ['mean', 'sum'] |
|
|
20 |
""" |
|
|
21 |
def __init__(self, alpha=0.0, eps=1e-7, reduction='mean'): |
|
|
22 |
super().__init__() |
|
|
23 |
self.alpha = alpha |
|
|
24 |
self.eps = eps |
|
|
25 |
self.reduction = reduction |
|
|
26 |
|
|
|
27 |
def __call__(self, h, y, t, c): |
|
|
28 |
""" |
|
|
29 |
Parameters |
|
|
30 |
---------- |
|
|
31 |
h: (n_batches, n_classes) |
|
|
32 |
The neural network output discrete survival predictions such that hazards = sigmoid(h). |
|
|
33 |
y_c: (n_batches, 2) or (n_batches, 3) |
|
|
34 |
The true time bin label (first column) and censorship indicator (second column). |
|
|
35 |
""" |
|
|
36 |
|
|
|
37 |
return nll_loss(h=h, y=y.unsqueeze(dim=1), c=c.unsqueeze(dim=1), |
|
|
38 |
alpha=self.alpha, eps=self.eps, |
|
|
39 |
reduction=self.reduction) |
|
|
40 |
|
|
|
41 |
|
|
|
42 |
# TODO: document better and clean up |
|
|
43 |
def nll_loss(h, y, c, alpha=0.0, eps=1e-7, reduction='mean'): |
|
|
44 |
""" |
|
|
45 |
The negative log-likelihood loss function for the discrete time to event model (Zadeh and Schmid, 2020). |
|
|
46 |
Code borrowed from https://github.com/mahmoodlab/Patch-GCN/blob/master/utils/utils.py |
|
|
47 |
Parameters |
|
|
48 |
---------- |
|
|
49 |
h: (n_batches, n_classes) |
|
|
50 |
The neural network output discrete survival predictions such that hazards = sigmoid(h). |
|
|
51 |
y: (n_batches, 1) |
|
|
52 |
The true time bin index label. |
|
|
53 |
c: (n_batches, 1) |
|
|
54 |
The censoring status indicator. |
|
|
55 |
alpha: float |
|
|
56 |
TODO: document |
|
|
57 |
eps: float |
|
|
58 |
Numerical constant; lower bound to avoid taking logs of tiny numbers. |
|
|
59 |
reduction: str |
|
|
60 |
Do we sum or average the loss function over the batches. Must be one of ['mean', 'sum'] |
|
|
61 |
References |
|
|
62 |
---------- |
|
|
63 |
Zadeh, S.G. and Schmid, M., 2020. Bias in cross-entropy-based training of deep survival networks. IEEE transactions on pattern analysis and machine intelligence. |
|
|
64 |
""" |
|
|
65 |
# print("h shape", h.shape) |
|
|
66 |
|
|
|
67 |
# make sure these are ints |
|
|
68 |
y = y.type(torch.int64) |
|
|
69 |
c = c.type(torch.int64) |
|
|
70 |
|
|
|
71 |
hazards = torch.sigmoid(h) |
|
|
72 |
# print("hazards shape", hazards.shape) |
|
|
73 |
|
|
|
74 |
S = torch.cumprod(1 - hazards, dim=1) |
|
|
75 |
# print("S.shape", S.shape, S) |
|
|
76 |
|
|
|
77 |
S_padded = torch.cat([torch.ones_like(c), S], 1) |
|
|
78 |
# S(-1) = 0, all patients are alive from (-inf, 0) by definition |
|
|
79 |
# after padding, S(0) = S[1], S(1) = S[2], etc, h(0) = h[0] |
|
|
80 |
# hazards[y] = hazards(1) |
|
|
81 |
# S[1] = S(1) |
|
|
82 |
# TODO: document and check |
|
|
83 |
|
|
|
84 |
# print("S_padded.shape", S_padded.shape, S_padded) |
|
|
85 |
|
|
|
86 |
|
|
|
87 |
# TODO: document/better naming |
|
|
88 |
s_prev = torch.gather(S_padded, dim=1, index=y).clamp(min=eps) |
|
|
89 |
h_this = torch.gather(hazards, dim=1, index=y).clamp(min=eps) |
|
|
90 |
s_this = torch.gather(S_padded, dim=1, index=y+1).clamp(min=eps) |
|
|
91 |
# print('s_prev.s_prev', s_prev.shape, s_prev) |
|
|
92 |
# print('h_this.shape', h_this.shape, h_this) |
|
|
93 |
# print('s_this.shape', s_this.shape, s_this) |
|
|
94 |
|
|
|
95 |
uncensored_loss = -(1 - c) * (torch.log(s_prev) + torch.log(h_this)) |
|
|
96 |
censored_loss = - c * torch.log(s_this) |
|
|
97 |
|
|
|
98 |
|
|
|
99 |
# print('uncensored_loss.shape', uncensored_loss.shape) |
|
|
100 |
# print('censored_loss.shape', censored_loss.shape) |
|
|
101 |
|
|
|
102 |
neg_l = censored_loss + uncensored_loss |
|
|
103 |
if alpha is not None: |
|
|
104 |
loss = (1 - alpha) * neg_l + alpha * uncensored_loss |
|
|
105 |
|
|
|
106 |
if reduction == 'mean': |
|
|
107 |
loss = loss.mean() |
|
|
108 |
elif reduction == 'sum': |
|
|
109 |
loss = loss.sum() |
|
|
110 |
else: |
|
|
111 |
raise ValueError("Bad input for reduction: {}".format(reduction)) |
|
|
112 |
|
|
|
113 |
return loss |