[405115]: / models / model_porpoise.py

Download this file

394 lines (313 with data), 14.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import torch
import torch.nn as nn
import torch.nn.functional as F
import pdb
import numpy as np
from os.path import join
from collections import OrderedDict
class LRBilinearFusion(nn.Module):
def __init__(self, skip=0, use_bilinear=0, gate1=1, gate2=1, dim1=128, dim2=128,
scale_dim1=1, scale_dim2=1, dropout_rate=0.25,
rank=16, output_dim=4):
super(LRBilinearFusion, self).__init__()
self.skip = skip
self.use_bilinear = use_bilinear
self.gate1 = gate1
self.gate2 = gate2
self.rank = rank
self.output_dim = output_dim
dim1_og, dim2_og, dim1, dim2 = dim1, dim2, dim1//scale_dim1, dim2//scale_dim2
skip_dim = dim1_og+dim2_og if skip else 0
self.linear_h1 = nn.Sequential(nn.Linear(dim1_og, dim1), nn.ReLU())
self.linear_z1 = nn.Bilinear(dim1_og, dim2_og, dim1) if use_bilinear else nn.Sequential(nn.Linear(dim1_og+dim2_og, dim1))
self.linear_o1 = nn.Sequential(nn.Linear(dim1, dim1), nn.ReLU(), nn.Dropout(p=dropout_rate))
self.linear_h2 = nn.Sequential(nn.Linear(dim2_og, dim2), nn.ReLU())
self.linear_z2 = nn.Bilinear(dim1_og, dim2_og, dim2) if use_bilinear else nn.Sequential(nn.Linear(dim1_og+dim2_og, dim2))
self.linear_o2 = nn.Sequential(nn.Linear(dim2, dim2), nn.ReLU(), nn.Dropout(p=dropout_rate))
self.h1_factor = Parameter(torch.Tensor(self.rank, dim1 + 1, output_dim))
self.h2_factor = Parameter(torch.Tensor(self.rank, dim2 + 1, output_dim))
self.fusion_weights = Parameter(torch.Tensor(1, self.rank))
self.fusion_bias = Parameter(torch.Tensor(1, self.output_dim))
xavier_normal(self.h1_factor)
xavier_normal(self.h2_factor)
xavier_normal(self.fusion_weights)
self.fusion_bias.data.fill_(0)
#init_max_weights(self)
def forward(self, vec1, vec2):
### Gated Multimodal Units
if self.gate1:
h1 = self.linear_h1(vec1)
z1 = self.linear_z1(vec1, vec2) if self.use_bilinear else self.linear_z1(torch.cat((vec1, vec2), dim=1))
o1 = self.linear_o1(nn.Sigmoid()(z1)*h1)
else:
h1 = F.dropout(self.linear_h1(vec1), 0.25)
o1 = self.linear_o1(h1)
if self.gate2:
h2 = self.linear_h2(vec2)
z2 = self.linear_z2(vec1, vec2) if self.use_bilinear else self.linear_z2(torch.cat((vec1, vec2), dim=1))
o2 = self.linear_o2(nn.Sigmoid()(z2)*h2)
else:
h2 = F.dropout(self.linear_h2(vec2), 0.25)
o2 = self.linear_o2(h2)
### Fusion
DTYPE = torch.cuda.FloatTensor
_o1 = torch.cat((Variable(torch.ones(1, 1).type(DTYPE), requires_grad=False), o1), dim=1)
_o2 = torch.cat((Variable(torch.ones(1, 1).type(DTYPE), requires_grad=False), o2), dim=1)
o1_fusion = torch.matmul(_o1, self.h1_factor)
o2_fusion = torch.matmul(_o2, self.h2_factor)
fusion_zy = o1_fusion * o2_fusion
output = torch.matmul(self.fusion_weights, fusion_zy.permute(1, 0, 2)).squeeze() + self.fusion_bias
output = output.view(-1, self.output_dim)
return output
class BilinearFusion(nn.Module):
def __init__(self, skip=0, use_bilinear=0, gate1=1, gate2=1, dim1=128, dim2=128, scale_dim1=1, scale_dim2=1, mmhid=256, dropout_rate=0.25):
super(BilinearFusion, self).__init__()
self.skip = skip
self.use_bilinear = use_bilinear
self.gate1 = gate1
self.gate2 = gate2
dim1_og, dim2_og, dim1, dim2 = dim1, dim2, dim1//scale_dim1, dim2//scale_dim2
skip_dim = dim1_og+dim2_og if skip else 0
self.linear_h1 = nn.Sequential(nn.Linear(dim1_og, dim1), nn.ReLU())
self.linear_z1 = nn.Bilinear(dim1_og, dim2_og, dim1) if use_bilinear else nn.Sequential(nn.Linear(dim1_og+dim2_og, dim1))
self.linear_o1 = nn.Sequential(nn.Linear(dim1, dim1), nn.ReLU(), nn.Dropout(p=dropout_rate))
self.linear_h2 = nn.Sequential(nn.Linear(dim2_og, dim2), nn.ReLU())
self.linear_z2 = nn.Bilinear(dim1_og, dim2_og, dim2) if use_bilinear else nn.Sequential(nn.Linear(dim1_og+dim2_og, dim2))
self.linear_o2 = nn.Sequential(nn.Linear(dim2, dim2), nn.ReLU(), nn.Dropout(p=dropout_rate))
self.post_fusion_dropout = nn.Dropout(p=dropout_rate)
self.encoder1 = nn.Sequential(nn.Linear((dim1+1)*(dim2+1), 256), nn.ReLU())
self.encoder2 = nn.Sequential(nn.Linear(256+skip_dim, mmhid), nn.ReLU())
#init_max_weights(self)
def forward(self, vec1, vec2):
### Gated Multimodal Units
if self.gate1:
h1 = self.linear_h1(vec1)
z1 = self.linear_z1(vec1, vec2) if self.use_bilinear else self.linear_z1(torch.cat((vec1, vec2), dim=1))
o1 = self.linear_o1(nn.Sigmoid()(z1)*h1)
else:
h1 = self.linear_h1(vec1)
o1 = self.linear_o1(h1)
if self.gate2:
h2 = self.linear_h2(vec2)
z2 = self.linear_z2(vec1, vec2) if self.use_bilinear else self.linear_z2(torch.cat((vec1, vec2), dim=1))
o2 = self.linear_o2(nn.Sigmoid()(z2)*h2)
else:
h2 = self.linear_h2(vec2)
o2 = self.linear_o2(h2)
### Fusion
o1 = torch.cat((o1, torch.cuda.FloatTensor(o1.shape[0], 1).fill_(1)), 1)
o2 = torch.cat((o2, torch.cuda.FloatTensor(o2.shape[0], 1).fill_(1)), 1)
o12 = torch.bmm(o1.unsqueeze(2), o2.unsqueeze(1)).flatten(start_dim=1) # BATCH_SIZE X 1024
out = self.post_fusion_dropout(o12)
out = self.encoder1(out)
if self.skip: out = torch.cat((out, vec1, vec2), 1)
out = self.encoder2(out)
return out
def SNN_Block(dim1, dim2, dropout=0.25):
return nn.Sequential(
nn.Linear(dim1, dim2),
nn.ELU(),
nn.AlphaDropout(p=dropout, inplace=False))
def MLP_Block(dim1, dim2, dropout=0.25):
return nn.Sequential(
nn.Linear(dim1, dim2),
nn.ReLU(),
nn.Dropout(p=dropout, inplace=False))
"""
Attention Network without Gating (2 fc layers)
args:
L: input feature dimension
D: hidden layer dimension
dropout: whether to use dropout (p = 0.25)
n_classes: number of classes (experimental usage for multiclass MIL)
"""
class Attn_Net(nn.Module):
def __init__(self, L = 1024, D = 256, dropout = False, n_classes = 1):
super(Attn_Net, self).__init__()
self.module = [
nn.Linear(L, D),
nn.Tanh()]
if dropout:
self.module.append(nn.Dropout(0.25))
self.module.append(nn.Linear(D, n_classes))
self.module = nn.Sequential(*self.module)
def forward(self, x):
return self.module(x), x # N x n_classes
"""
Attention Network with Sigmoid Gating (3 fc layers)
args:
L: input feature dimension
D: hidden layer dimension
dropout: whether to use dropout (p = 0.25)
n_classes: number of classes (experimental usage for multiclass MIL)
"""
class Attn_Net_Gated(nn.Module):
def __init__(self, L = 1024, D = 256, dropout = False, n_classes = 1):
super(Attn_Net_Gated, self).__init__()
self.attention_a = [
nn.Linear(L, D),
nn.Tanh()]
self.attention_b = [nn.Linear(L, D),
nn.Sigmoid()]
if dropout:
self.attention_a.append(nn.Dropout(0.25))
self.attention_b.append(nn.Dropout(0.25))
self.attention_a = nn.Sequential(*self.attention_a)
self.attention_b = nn.Sequential(*self.attention_b)
self.attention_c = nn.Linear(D, n_classes)
def forward(self, x):
a = self.attention_a(x)
b = self.attention_b(x)
A = a.mul(b)
A = self.attention_c(A) # N x n_classes
return A, x
"""
"""
def initialize_weights(module):
for m in module.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
class PorpoiseAMIL(nn.Module):
def __init__(self, size_arg = "small", n_classes=4):
super(PorpoiseAMIL, self).__init__()
self.size_dict = {"small": [1024, 512, 256], "big": [1024, 512, 384]}
size = self.size_dict[size_arg]
fc = [nn.Linear(size[0], size[1]), nn.ReLU(), nn.Dropout(0.25)]
attention_net = Attn_Net_Gated(L=size[1], D=size[2], dropout=0.25, n_classes=1)
fc.append(attention_net)
self.attention_net = nn.Sequential(*fc)
self.classifier = nn.Linear(size[1], n_classes)
initialize_weights(self)
def relocate(self):
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.device_count() > 1:
device_ids = list(range(torch.cuda.device_count()))
self.attention_net = nn.DataParallel(self.attention_net, device_ids=device_ids).to('cuda:0')
else:
self.attention_net = self.attention_net.to(device)
self.classifier = self.classifier.to(device)
def forward(self, **kwargs):
h = kwargs['x_path']
A, h = self.attention_net(h)
A = torch.transpose(A, 1, 0)
if 'attention_only' in kwargs.keys():
if kwargs['attention_only']:
return A
A_raw = A
A = F.softmax(A, dim=1)
M = torch.mm(A, h)
h = self.classifier(M)
return h
def get_slide_features(self, **kwargs):
h = kwargs['x_path']
A, h = self.attention_net(h)
A = torch.transpose(A, 1, 0)
if 'attention_only' in kwargs.keys():
if kwargs['attention_only']:
return A
A_raw = A
A = F.softmax(A, dim=1)
M = torch.mm(A, h)
return M
### MMF (in the PORPOISE Paper)
class PorpoiseMMF(nn.Module):
def __init__(self,
omic_input_dim,
path_input_dim=1024,
fusion='bilinear',
dropout=0.25,
n_classes=4,
scale_dim1=8,
scale_dim2=8,
gate_path=1,
gate_omic=1,
skip=True,
dropinput=0.10,
use_mlp=False,
size_arg = "small",
):
super(PorpoiseMMF, self).__init__()
self.fusion = fusion
self.size_dict_path = {"small": [path_input_dim, 512, 256], "big": [1024, 512, 384]}
self.size_dict_omic = {'small': [256, 256]}
self.n_classes = n_classes
### Deep Sets Architecture Construction
size = self.size_dict_path[size_arg]
if dropinput:
fc = [nn.Dropout(dropinput), nn.Linear(size[0], size[1]), nn.ReLU(), nn.Dropout(dropout)]
else:
fc = [nn.Linear(size[0], size[1]), nn.ReLU(), nn.Dropout(dropout)]
attention_net = Attn_Net_Gated(L=size[1], D=size[2], dropout=dropout, n_classes=1)
fc.append(attention_net)
self.attention_net = nn.Sequential(*fc)
self.rho = nn.Sequential(*[nn.Linear(size[1], size[2]), nn.ReLU(), nn.Dropout(dropout)])
### Constructing Genomic SNN
if self.fusion is not None:
if use_mlp:
Block = MLP_Block
else:
Block = SNN_Block
hidden = self.size_dict_omic['small']
fc_omic = [Block(dim1=omic_input_dim, dim2=hidden[0])]
for i, _ in enumerate(hidden[1:]):
fc_omic.append(Block(dim1=hidden[i], dim2=hidden[i+1], dropout=0.25))
self.fc_omic = nn.Sequential(*fc_omic)
if self.fusion == 'concat':
self.mm = nn.Sequential(*[nn.Linear(256*2, size[2]), nn.ReLU(), nn.Linear(size[2], size[2]), nn.ReLU()])
elif self.fusion == 'bilinear':
self.mm = BilinearFusion(dim1=256, dim2=256, scale_dim1=scale_dim1, gate1=gate_path, scale_dim2=scale_dim2, gate2=gate_omic, skip=skip, mmhid=256)
elif self.fusion == 'lrb':
self.mm = LRBilinearFusion(dim1=256, dim2=256, scale_dim1=scale_dim1, gate1=gate_path, scale_dim2=scale_dim2, gate2=gate_omic)
else:
self.mm = None
self.classifier_mm = nn.Linear(size[2], n_classes)
def relocate(self):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.device_count() >= 1:
device_ids = list(range(torch.cuda.device_count()))
self.attention_net = nn.DataParallel(self.attention_net, device_ids=device_ids).to('cuda:0')
if self.fusion is not None:
self.fc_omic = self.fc_omic.to(device)
self.mm = self.mm.to(device)
self.rho = self.rho.to(device)
self.classifier_mm = self.classifier_mm.to(device)
def forward(self, **kwargs):
x_path = kwargs['x_path']
A, h_path = self.attention_net(x_path)
A = torch.transpose(A, 1, 0)
A_raw = A
A = F.softmax(A, dim=1)
h_path = torch.mm(A, h_path)
h_path = self.rho(h_path)
x_omic = kwargs['x_omic']
h_omic = self.fc_omic(x_omic)
if self.fusion == 'bilinear':
h_mm = self.mm(h_path, h_omic)
elif self.fusion == 'concat':
h_mm = self.mm(torch.cat([h_path, h_omic], axis=1))
elif self.fusion == 'lrb':
h_mm = self.mm(h_path, h_omic) # logits needs to be a [1 x 4] vector
return h_mm
h_mm = self.classifier_mm(h_mm) # logits needs to be a [B x 4] vector
assert len(h_mm.shape) == 2 and h_mm.shape[1] == self.n_classes
return h_mm
def captum(self, h, X):
A, h = self.attention_net(h)
A = A.squeeze(dim=2)
A = F.softmax(A, dim=1)
M = torch.bmm(A.unsqueeze(dim=1), h).squeeze(dim=1) #M = torch.mm(A, h)
M = self.rho(M)
O = self.fc_omic(X)
if self.fusion == 'bilinear':
MM = self.mm(M, O)
elif self.fusion == 'concat':
MM = self.mm(torch.cat([M, O], axis=1))
logits = self.classifier(MM)
hazards = torch.sigmoid(logits)
S = torch.cumprod(1 - hazards, dim=1)
risk = -torch.sum(S, dim=1)
return risk