Diff of /main.py [000000] .. [405115]

Switch to side-by-side view

--- a
+++ b/main.py
@@ -0,0 +1,262 @@
+from __future__ import print_function
+import numpy as np
+import torch_geometric
+
+import argparse
+import pdb
+import os
+import math
+import sys
+from timeit import default_timer as timer
+
+import numpy as np
+import pandas as pd
+
+### Internal Imports
+from datasets.dataset_survival import Generic_WSI_Survival_Dataset, Generic_MIL_Survival_Dataset
+from utils.file_utils import save_pkl, load_pkl
+from utils.core_utils import train
+from utils.utils import get_custom_exp_code
+
+### PyTorch Imports
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.utils.data import DataLoader, sampler
+
+
+def main(args):
+	#### Create Results Directory
+	if not os.path.isdir(args.results_dir):
+		os.mkdir(args.results_dir)
+
+	if args.k_start == -1:
+		start = 0
+	else:
+		start = args.k_start
+	if args.k_end == -1:
+		end = args.k
+	else:
+		end = args.k_end
+
+	latest_val_cindex = []
+	folds = np.arange(start, end)
+
+	### Start 5-Fold CV Evaluation.
+	for i in folds:
+		start = timer()
+		seed_torch(args.seed)
+		results_pkl_path = os.path.join(args.results_dir, 'split_latest_val_{}_results.pkl'.format(i))
+		if os.path.isfile(results_pkl_path) and (not args.overwrite):
+			print("Skipping Split %d" % i)
+			continue
+
+		### Gets the Train + Val Dataset Loader.
+		train_dataset, val_dataset = dataset.return_splits(from_id=False, 
+				csv_path='{}/splits_{}.csv'.format(args.split_dir, i))
+		train_dataset.set_split_id(split_id=i)
+		val_dataset.set_split_id(split_id=i)
+		
+		#pdb.set_trace()
+		print('training: {}, validation: {}'.format(len(train_dataset), len(val_dataset)))
+		datasets = (train_dataset, val_dataset)
+		
+		### Specify the input dimension size if using genomic features.
+		if 'omic' in args.mode or args.mode == 'cluster' or args.mode == 'graph' or args.mode == 'pyramid':
+			args.omic_input_dim = train_dataset.genomic_features.shape[1]
+			print("Genomic Dimension", args.omic_input_dim)
+		elif 'coattn' in args.mode:
+			args.omic_sizes = train_dataset.omic_sizes
+			print('Genomic Dimensions', args.omic_sizes)
+		else:
+			args.omic_input_dim = 0
+
+		### Run Train-Val on Survival Task.
+		if args.task_type == 'survival':
+			val_latest, cindex_latest = train(datasets, i, args)
+			latest_val_cindex.append(cindex_latest)
+
+		### Write Results for Each Split to PKL
+		save_pkl(results_pkl_path, val_latest)
+		end = timer()
+		print('Fold %d Time: %f seconds' % (i, end - start))
+
+	### Finish 5-Fold CV Evaluation.
+	if args.task_type == 'survival':
+		results_latest_df = pd.DataFrame({'folds': folds, 'val_cindex': latest_val_cindex})
+
+	if len(folds) != args.k:
+		save_name = 'summary_partial_{}_{}.csv'.format(start, end)
+	else:
+		save_name = 'summary.csv'
+
+	results_latest_df.to_csv(os.path.join(args.results_dir, 'summary_latest.csv'))
+
+### Training settings
+parser = argparse.ArgumentParser(description='Configurations for Survival Analysis on TCGA Data.')
+### Checkpoint + Misc. Pathing Parameters
+parser.add_argument('--data_root_dir',   type=str, default='path/to/data_root_dir', help='Data directory to WSI features (extracted via CLAM')
+parser.add_argument('--seed', 			 type=int, default=1, help='Random seed for reproducible experiment (default: 1)')
+parser.add_argument('--k', 			     type=int, default=5, help='Number of folds (default: 5)')
+parser.add_argument('--k_start',		 type=int, default=-1, help='Start fold (Default: -1, last fold)')
+parser.add_argument('--k_end',			 type=int, default=-1, help='End fold (Default: -1, first fold)')
+parser.add_argument('--results_dir',     type=str, default='./results_new', help='Results directory (Default: ./results)')
+parser.add_argument('--which_splits',    type=str, default='5foldcv', help='Which splits folder to use in ./splits/ (Default: ./splits/5foldcv')
+parser.add_argument('--split_dir',       type=str, default='tcga_blca', help='Which cancer type within ./splits/<which_splits> to use for training. Used synonymously for "task" (Default: tcga_blca_100)')
+parser.add_argument('--log_data',        action='store_true', default=True, help='Log data using tensorboard')
+parser.add_argument('--overwrite',     	 action='store_true', default=False, help='Whether or not to overwrite experiments (if already ran)')
+
+### Model Parameters.
+parser.add_argument('--model_type',      type=str, default='mcat', help='Type of model (Default: mcat)')
+parser.add_argument('--mode',            type=str, choices=['omic', 'path', 'pathomic', 'pathomic_fast', 'cluster', 'coattn'], default='coattn', help='Specifies which modalities to use / collate function in dataloader.')
+parser.add_argument('--fusion',          type=str, choices=['None', 'concat', 'bilinear'], default='None', help='Type of fusion. (Default: concat).')
+parser.add_argument('--apply_sig',		 action='store_true', default=False, help='Use genomic features as signature embeddings.')
+parser.add_argument('--apply_sigfeats',  action='store_true', default=False, help='Use genomic features as tabular features.')
+parser.add_argument('--drop_out',        action='store_true', default=True, help='Enable dropout (p=0.25)')
+parser.add_argument('--model_size_wsi',  type=str, default='small', help='Network size of AMIL model')
+parser.add_argument('--model_size_omic', type=str, default='small', help='Network size of SNN model')
+
+parser.add_argument('--n_classes', type=int, default=4)
+
+
+### PORPOISE
+parser.add_argument('--apply_mutsig', action='store_true', default=False)
+parser.add_argument('--gate_path', action='store_true', default=False)
+parser.add_argument('--gate_omic', action='store_true', default=False)
+parser.add_argument('--scale_dim1', type=int, default=8)
+parser.add_argument('--scale_dim2', type=int, default=8)
+parser.add_argument('--skip', action='store_true', default=False)
+parser.add_argument('--dropinput', type=float, default=0.0)
+parser.add_argument('--path_input_dim', type=int, default=1024)
+parser.add_argument('--use_mlp', action='store_true', default=False)
+
+
+### Optimizer Parameters + Survival Loss Function
+parser.add_argument('--opt',             type=str, choices = ['adam', 'sgd'], default='adam')
+parser.add_argument('--batch_size',      type=int, default=1, help='Batch Size (Default: 1, due to varying bag sizes)')
+parser.add_argument('--gc',              type=int, default=32, help='Gradient Accumulation Step.')
+parser.add_argument('--max_epochs',      type=int, default=20, help='Maximum number of epochs to train (default: 20)')
+parser.add_argument('--lr',				 type=float, default=2e-4, help='Learning rate (default: 0.0001)')
+parser.add_argument('--bag_loss',        type=str, choices=['svm', 'ce', 'ce_surv', 'nll_surv'], default='nll_surv', help='slide-level classification loss function (default: ce)')
+parser.add_argument('--label_frac',      type=float, default=1.0, help='fraction of training labels (default: 1.0)')
+parser.add_argument('--reg', 			 type=float, default=1e-5, help='L2-regularization weight decay (default: 1e-5)')
+parser.add_argument('--alpha_surv',      type=float, default=0.0, help='How much to weigh uncensored patients')
+parser.add_argument('--reg_type',        type=str, choices=['None', 'omic', 'pathomic'], default='None', help='Which network submodules to apply L1-Regularization (default: None)')
+parser.add_argument('--lambda_reg',      type=float, default=1e-5, help='L1-Regularization Strength (Default 1e-4)')
+parser.add_argument('--weighted_sample', action='store_true', default=True, help='Enable weighted sampling')
+parser.add_argument('--early_stopping',  action='store_true', default=False, help='Enable early stopping')
+
+### CLAM-Specific Parameters
+parser.add_argument('--bag_weight',      type=float, default=0.7, help='clam: weight coefficient for bag-level loss (default: 0.7)')
+parser.add_argument('--testing', 	 	 action='store_true', default=False, help='debugging tool')
+
+args = parser.parse_args()
+device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
+
+### Creates Experiment Code from argparse + Folder Name to Save Results
+args = get_custom_exp_code(args)
+args.task = '_'.join(args.split_dir.split('_')[:2]) + '_survival'
+print("Experiment Name:", args.exp_code)
+
+### Sets Seed for reproducible experiments.
+def seed_torch(seed=7):
+	import random
+	random.seed(seed)
+	os.environ['PYTHONHASHSEED'] = str(seed)
+	np.random.seed(seed)
+	torch.manual_seed(seed)
+	if device.type == 'cuda':
+		torch.cuda.manual_seed(seed)
+		torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
+	torch.backends.cudnn.benchmark = False
+	torch.backends.cudnn.deterministic = True
+
+seed_torch(args.seed)
+
+encoding_size = 1024
+settings = {'num_splits': args.k, 
+			'k_start': args.k_start,
+			'k_end': args.k_end,
+			'task': args.task,
+			'max_epochs': args.max_epochs, 
+			'results_dir': args.results_dir, 
+			'lr': args.lr,
+			'experiment': args.exp_code,
+			'reg': args.reg,
+			'label_frac': args.label_frac,
+			'bag_loss': args.bag_loss,
+			#'bag_weight': args.bag_weight,
+			'seed': args.seed,
+			'model_type': args.model_type,
+			'model_size_wsi': args.model_size_wsi,
+			'model_size_omic': args.model_size_omic,
+			"use_drop_out": args.drop_out,
+			'weighted_sample': args.weighted_sample,
+			'gc': args.gc,
+			'opt': args.opt}
+print('\nLoad Dataset')
+
+if 'survival' in args.task:
+	study = '_'.join(args.task.split('_')[:2])
+	if study == 'tcga_kirc' or study == 'tcga_kirp':
+		combined_study = 'tcga_kidney'
+	elif study == 'tcga_luad' or study == 'tcga_lusc':
+		combined_study = 'tcga_lung'
+	else:
+		combined_study = study
+	
+	study_dir = '%s_20x_features' % combined_study
+
+	dataset = Generic_MIL_Survival_Dataset(csv_path = './%s/%s_all_clean.csv.zip' % (args.dataset_path, study),
+										   mode = args.mode,
+										   apply_sig = args.apply_sig,
+										   data_dir= os.path.join(args.data_root_dir, study_dir),
+										   shuffle = False, 
+										   seed = args.seed, 
+										   print_info = True,
+										   patient_strat= False,
+										   n_bins=4,
+										   label_col = 'survival_months',
+										   ignore=[])
+else:
+	raise NotImplementedError
+
+if isinstance(dataset, Generic_MIL_Survival_Dataset):
+	args.task_type = 'survival'
+else:
+	raise NotImplementedError
+
+### Creates results_dir Directory.
+if not os.path.isdir(args.results_dir):
+	os.mkdir(args.results_dir)
+
+### Appends to the results_dir path: 1) which splits were used for training (e.g. - 5foldcv), and then 2) the parameter code and 3) experiment code
+args.results_dir = os.path.join(args.results_dir, args.which_splits, args.param_code, str(args.exp_code) + '_s{}'.format(args.seed))
+if not os.path.isdir(args.results_dir):
+	os.makedirs(args.results_dir)
+
+if ('summary_latest.csv' in os.listdir(args.results_dir)) and (not args.overwrite):
+	print("Exp Code <%s> already exists! Exiting script." % args.exp_code)
+	sys.exit()
+
+### Sets the absolute path of split_dir
+args.split_dir = os.path.join('./splits', args.which_splits, args.split_dir)
+print("split_dir", args.split_dir)
+assert os.path.isdir(args.split_dir)
+settings.update({'split_dir': args.split_dir})
+
+with open(args.results_dir + '/experiment_{}.txt'.format(args.exp_code), 'w') as f:
+	print(settings, file=f)
+f.close()
+
+print("################# Settings ###################")
+for key, val in settings.items():
+	print("{}:  {}".format(key, val))        
+
+if __name__ == "__main__":
+	start = timer()
+	results = main(args)
+	end = timer()
+	print("finished!")
+	print("end script")
+	print('Script Time: %f seconds' % (end - start))