|
a |
|
b/main.py |
|
|
1 |
from __future__ import print_function |
|
|
2 |
import numpy as np |
|
|
3 |
import torch_geometric |
|
|
4 |
|
|
|
5 |
import argparse |
|
|
6 |
import pdb |
|
|
7 |
import os |
|
|
8 |
import math |
|
|
9 |
import sys |
|
|
10 |
from timeit import default_timer as timer |
|
|
11 |
|
|
|
12 |
import numpy as np |
|
|
13 |
import pandas as pd |
|
|
14 |
|
|
|
15 |
### Internal Imports |
|
|
16 |
from datasets.dataset_survival import Generic_WSI_Survival_Dataset, Generic_MIL_Survival_Dataset |
|
|
17 |
from utils.file_utils import save_pkl, load_pkl |
|
|
18 |
from utils.core_utils import train |
|
|
19 |
from utils.utils import get_custom_exp_code |
|
|
20 |
|
|
|
21 |
### PyTorch Imports |
|
|
22 |
import torch |
|
|
23 |
import torch.nn as nn |
|
|
24 |
import torch.nn.functional as F |
|
|
25 |
from torch.utils.data import DataLoader, sampler |
|
|
26 |
|
|
|
27 |
|
|
|
28 |
def main(args): |
|
|
29 |
#### Create Results Directory |
|
|
30 |
if not os.path.isdir(args.results_dir): |
|
|
31 |
os.mkdir(args.results_dir) |
|
|
32 |
|
|
|
33 |
if args.k_start == -1: |
|
|
34 |
start = 0 |
|
|
35 |
else: |
|
|
36 |
start = args.k_start |
|
|
37 |
if args.k_end == -1: |
|
|
38 |
end = args.k |
|
|
39 |
else: |
|
|
40 |
end = args.k_end |
|
|
41 |
|
|
|
42 |
latest_val_cindex = [] |
|
|
43 |
folds = np.arange(start, end) |
|
|
44 |
|
|
|
45 |
### Start 5-Fold CV Evaluation. |
|
|
46 |
for i in folds: |
|
|
47 |
start = timer() |
|
|
48 |
seed_torch(args.seed) |
|
|
49 |
results_pkl_path = os.path.join(args.results_dir, 'split_latest_val_{}_results.pkl'.format(i)) |
|
|
50 |
if os.path.isfile(results_pkl_path) and (not args.overwrite): |
|
|
51 |
print("Skipping Split %d" % i) |
|
|
52 |
continue |
|
|
53 |
|
|
|
54 |
### Gets the Train + Val Dataset Loader. |
|
|
55 |
train_dataset, val_dataset = dataset.return_splits(from_id=False, |
|
|
56 |
csv_path='{}/splits_{}.csv'.format(args.split_dir, i)) |
|
|
57 |
train_dataset.set_split_id(split_id=i) |
|
|
58 |
val_dataset.set_split_id(split_id=i) |
|
|
59 |
|
|
|
60 |
#pdb.set_trace() |
|
|
61 |
print('training: {}, validation: {}'.format(len(train_dataset), len(val_dataset))) |
|
|
62 |
datasets = (train_dataset, val_dataset) |
|
|
63 |
|
|
|
64 |
### Specify the input dimension size if using genomic features. |
|
|
65 |
if 'omic' in args.mode or args.mode == 'cluster' or args.mode == 'graph' or args.mode == 'pyramid': |
|
|
66 |
args.omic_input_dim = train_dataset.genomic_features.shape[1] |
|
|
67 |
print("Genomic Dimension", args.omic_input_dim) |
|
|
68 |
elif 'coattn' in args.mode: |
|
|
69 |
args.omic_sizes = train_dataset.omic_sizes |
|
|
70 |
print('Genomic Dimensions', args.omic_sizes) |
|
|
71 |
else: |
|
|
72 |
args.omic_input_dim = 0 |
|
|
73 |
|
|
|
74 |
### Run Train-Val on Survival Task. |
|
|
75 |
if args.task_type == 'survival': |
|
|
76 |
val_latest, cindex_latest = train(datasets, i, args) |
|
|
77 |
latest_val_cindex.append(cindex_latest) |
|
|
78 |
|
|
|
79 |
### Write Results for Each Split to PKL |
|
|
80 |
save_pkl(results_pkl_path, val_latest) |
|
|
81 |
end = timer() |
|
|
82 |
print('Fold %d Time: %f seconds' % (i, end - start)) |
|
|
83 |
|
|
|
84 |
### Finish 5-Fold CV Evaluation. |
|
|
85 |
if args.task_type == 'survival': |
|
|
86 |
results_latest_df = pd.DataFrame({'folds': folds, 'val_cindex': latest_val_cindex}) |
|
|
87 |
|
|
|
88 |
if len(folds) != args.k: |
|
|
89 |
save_name = 'summary_partial_{}_{}.csv'.format(start, end) |
|
|
90 |
else: |
|
|
91 |
save_name = 'summary.csv' |
|
|
92 |
|
|
|
93 |
results_latest_df.to_csv(os.path.join(args.results_dir, 'summary_latest.csv')) |
|
|
94 |
|
|
|
95 |
### Training settings |
|
|
96 |
parser = argparse.ArgumentParser(description='Configurations for Survival Analysis on TCGA Data.') |
|
|
97 |
### Checkpoint + Misc. Pathing Parameters |
|
|
98 |
parser.add_argument('--data_root_dir', type=str, default='path/to/data_root_dir', help='Data directory to WSI features (extracted via CLAM') |
|
|
99 |
parser.add_argument('--seed', type=int, default=1, help='Random seed for reproducible experiment (default: 1)') |
|
|
100 |
parser.add_argument('--k', type=int, default=5, help='Number of folds (default: 5)') |
|
|
101 |
parser.add_argument('--k_start', type=int, default=-1, help='Start fold (Default: -1, last fold)') |
|
|
102 |
parser.add_argument('--k_end', type=int, default=-1, help='End fold (Default: -1, first fold)') |
|
|
103 |
parser.add_argument('--results_dir', type=str, default='./results_new', help='Results directory (Default: ./results)') |
|
|
104 |
parser.add_argument('--which_splits', type=str, default='5foldcv', help='Which splits folder to use in ./splits/ (Default: ./splits/5foldcv') |
|
|
105 |
parser.add_argument('--split_dir', type=str, default='tcga_blca', help='Which cancer type within ./splits/<which_splits> to use for training. Used synonymously for "task" (Default: tcga_blca_100)') |
|
|
106 |
parser.add_argument('--log_data', action='store_true', default=True, help='Log data using tensorboard') |
|
|
107 |
parser.add_argument('--overwrite', action='store_true', default=False, help='Whether or not to overwrite experiments (if already ran)') |
|
|
108 |
|
|
|
109 |
### Model Parameters. |
|
|
110 |
parser.add_argument('--model_type', type=str, default='mcat', help='Type of model (Default: mcat)') |
|
|
111 |
parser.add_argument('--mode', type=str, choices=['omic', 'path', 'pathomic', 'pathomic_fast', 'cluster', 'coattn'], default='coattn', help='Specifies which modalities to use / collate function in dataloader.') |
|
|
112 |
parser.add_argument('--fusion', type=str, choices=['None', 'concat', 'bilinear'], default='None', help='Type of fusion. (Default: concat).') |
|
|
113 |
parser.add_argument('--apply_sig', action='store_true', default=False, help='Use genomic features as signature embeddings.') |
|
|
114 |
parser.add_argument('--apply_sigfeats', action='store_true', default=False, help='Use genomic features as tabular features.') |
|
|
115 |
parser.add_argument('--drop_out', action='store_true', default=True, help='Enable dropout (p=0.25)') |
|
|
116 |
parser.add_argument('--model_size_wsi', type=str, default='small', help='Network size of AMIL model') |
|
|
117 |
parser.add_argument('--model_size_omic', type=str, default='small', help='Network size of SNN model') |
|
|
118 |
|
|
|
119 |
parser.add_argument('--n_classes', type=int, default=4) |
|
|
120 |
|
|
|
121 |
|
|
|
122 |
### PORPOISE |
|
|
123 |
parser.add_argument('--apply_mutsig', action='store_true', default=False) |
|
|
124 |
parser.add_argument('--gate_path', action='store_true', default=False) |
|
|
125 |
parser.add_argument('--gate_omic', action='store_true', default=False) |
|
|
126 |
parser.add_argument('--scale_dim1', type=int, default=8) |
|
|
127 |
parser.add_argument('--scale_dim2', type=int, default=8) |
|
|
128 |
parser.add_argument('--skip', action='store_true', default=False) |
|
|
129 |
parser.add_argument('--dropinput', type=float, default=0.0) |
|
|
130 |
parser.add_argument('--path_input_dim', type=int, default=1024) |
|
|
131 |
parser.add_argument('--use_mlp', action='store_true', default=False) |
|
|
132 |
|
|
|
133 |
|
|
|
134 |
### Optimizer Parameters + Survival Loss Function |
|
|
135 |
parser.add_argument('--opt', type=str, choices = ['adam', 'sgd'], default='adam') |
|
|
136 |
parser.add_argument('--batch_size', type=int, default=1, help='Batch Size (Default: 1, due to varying bag sizes)') |
|
|
137 |
parser.add_argument('--gc', type=int, default=32, help='Gradient Accumulation Step.') |
|
|
138 |
parser.add_argument('--max_epochs', type=int, default=20, help='Maximum number of epochs to train (default: 20)') |
|
|
139 |
parser.add_argument('--lr', type=float, default=2e-4, help='Learning rate (default: 0.0001)') |
|
|
140 |
parser.add_argument('--bag_loss', type=str, choices=['svm', 'ce', 'ce_surv', 'nll_surv'], default='nll_surv', help='slide-level classification loss function (default: ce)') |
|
|
141 |
parser.add_argument('--label_frac', type=float, default=1.0, help='fraction of training labels (default: 1.0)') |
|
|
142 |
parser.add_argument('--reg', type=float, default=1e-5, help='L2-regularization weight decay (default: 1e-5)') |
|
|
143 |
parser.add_argument('--alpha_surv', type=float, default=0.0, help='How much to weigh uncensored patients') |
|
|
144 |
parser.add_argument('--reg_type', type=str, choices=['None', 'omic', 'pathomic'], default='None', help='Which network submodules to apply L1-Regularization (default: None)') |
|
|
145 |
parser.add_argument('--lambda_reg', type=float, default=1e-5, help='L1-Regularization Strength (Default 1e-4)') |
|
|
146 |
parser.add_argument('--weighted_sample', action='store_true', default=True, help='Enable weighted sampling') |
|
|
147 |
parser.add_argument('--early_stopping', action='store_true', default=False, help='Enable early stopping') |
|
|
148 |
|
|
|
149 |
### CLAM-Specific Parameters |
|
|
150 |
parser.add_argument('--bag_weight', type=float, default=0.7, help='clam: weight coefficient for bag-level loss (default: 0.7)') |
|
|
151 |
parser.add_argument('--testing', action='store_true', default=False, help='debugging tool') |
|
|
152 |
|
|
|
153 |
args = parser.parse_args() |
|
|
154 |
device=torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
155 |
|
|
|
156 |
### Creates Experiment Code from argparse + Folder Name to Save Results |
|
|
157 |
args = get_custom_exp_code(args) |
|
|
158 |
args.task = '_'.join(args.split_dir.split('_')[:2]) + '_survival' |
|
|
159 |
print("Experiment Name:", args.exp_code) |
|
|
160 |
|
|
|
161 |
### Sets Seed for reproducible experiments. |
|
|
162 |
def seed_torch(seed=7): |
|
|
163 |
import random |
|
|
164 |
random.seed(seed) |
|
|
165 |
os.environ['PYTHONHASHSEED'] = str(seed) |
|
|
166 |
np.random.seed(seed) |
|
|
167 |
torch.manual_seed(seed) |
|
|
168 |
if device.type == 'cuda': |
|
|
169 |
torch.cuda.manual_seed(seed) |
|
|
170 |
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU. |
|
|
171 |
torch.backends.cudnn.benchmark = False |
|
|
172 |
torch.backends.cudnn.deterministic = True |
|
|
173 |
|
|
|
174 |
seed_torch(args.seed) |
|
|
175 |
|
|
|
176 |
encoding_size = 1024 |
|
|
177 |
settings = {'num_splits': args.k, |
|
|
178 |
'k_start': args.k_start, |
|
|
179 |
'k_end': args.k_end, |
|
|
180 |
'task': args.task, |
|
|
181 |
'max_epochs': args.max_epochs, |
|
|
182 |
'results_dir': args.results_dir, |
|
|
183 |
'lr': args.lr, |
|
|
184 |
'experiment': args.exp_code, |
|
|
185 |
'reg': args.reg, |
|
|
186 |
'label_frac': args.label_frac, |
|
|
187 |
'bag_loss': args.bag_loss, |
|
|
188 |
#'bag_weight': args.bag_weight, |
|
|
189 |
'seed': args.seed, |
|
|
190 |
'model_type': args.model_type, |
|
|
191 |
'model_size_wsi': args.model_size_wsi, |
|
|
192 |
'model_size_omic': args.model_size_omic, |
|
|
193 |
"use_drop_out": args.drop_out, |
|
|
194 |
'weighted_sample': args.weighted_sample, |
|
|
195 |
'gc': args.gc, |
|
|
196 |
'opt': args.opt} |
|
|
197 |
print('\nLoad Dataset') |
|
|
198 |
|
|
|
199 |
if 'survival' in args.task: |
|
|
200 |
study = '_'.join(args.task.split('_')[:2]) |
|
|
201 |
if study == 'tcga_kirc' or study == 'tcga_kirp': |
|
|
202 |
combined_study = 'tcga_kidney' |
|
|
203 |
elif study == 'tcga_luad' or study == 'tcga_lusc': |
|
|
204 |
combined_study = 'tcga_lung' |
|
|
205 |
else: |
|
|
206 |
combined_study = study |
|
|
207 |
|
|
|
208 |
study_dir = '%s_20x_features' % combined_study |
|
|
209 |
|
|
|
210 |
dataset = Generic_MIL_Survival_Dataset(csv_path = './%s/%s_all_clean.csv.zip' % (args.dataset_path, study), |
|
|
211 |
mode = args.mode, |
|
|
212 |
apply_sig = args.apply_sig, |
|
|
213 |
data_dir= os.path.join(args.data_root_dir, study_dir), |
|
|
214 |
shuffle = False, |
|
|
215 |
seed = args.seed, |
|
|
216 |
print_info = True, |
|
|
217 |
patient_strat= False, |
|
|
218 |
n_bins=4, |
|
|
219 |
label_col = 'survival_months', |
|
|
220 |
ignore=[]) |
|
|
221 |
else: |
|
|
222 |
raise NotImplementedError |
|
|
223 |
|
|
|
224 |
if isinstance(dataset, Generic_MIL_Survival_Dataset): |
|
|
225 |
args.task_type = 'survival' |
|
|
226 |
else: |
|
|
227 |
raise NotImplementedError |
|
|
228 |
|
|
|
229 |
### Creates results_dir Directory. |
|
|
230 |
if not os.path.isdir(args.results_dir): |
|
|
231 |
os.mkdir(args.results_dir) |
|
|
232 |
|
|
|
233 |
### Appends to the results_dir path: 1) which splits were used for training (e.g. - 5foldcv), and then 2) the parameter code and 3) experiment code |
|
|
234 |
args.results_dir = os.path.join(args.results_dir, args.which_splits, args.param_code, str(args.exp_code) + '_s{}'.format(args.seed)) |
|
|
235 |
if not os.path.isdir(args.results_dir): |
|
|
236 |
os.makedirs(args.results_dir) |
|
|
237 |
|
|
|
238 |
if ('summary_latest.csv' in os.listdir(args.results_dir)) and (not args.overwrite): |
|
|
239 |
print("Exp Code <%s> already exists! Exiting script." % args.exp_code) |
|
|
240 |
sys.exit() |
|
|
241 |
|
|
|
242 |
### Sets the absolute path of split_dir |
|
|
243 |
args.split_dir = os.path.join('./splits', args.which_splits, args.split_dir) |
|
|
244 |
print("split_dir", args.split_dir) |
|
|
245 |
assert os.path.isdir(args.split_dir) |
|
|
246 |
settings.update({'split_dir': args.split_dir}) |
|
|
247 |
|
|
|
248 |
with open(args.results_dir + '/experiment_{}.txt'.format(args.exp_code), 'w') as f: |
|
|
249 |
print(settings, file=f) |
|
|
250 |
f.close() |
|
|
251 |
|
|
|
252 |
print("################# Settings ###################") |
|
|
253 |
for key, val in settings.items(): |
|
|
254 |
print("{}: {}".format(key, val)) |
|
|
255 |
|
|
|
256 |
if __name__ == "__main__": |
|
|
257 |
start = timer() |
|
|
258 |
results = main(args) |
|
|
259 |
end = timer() |
|
|
260 |
print("finished!") |
|
|
261 |
print("end script") |
|
|
262 |
print('Script Time: %f seconds' % (end - start)) |