from __future__ import print_function, division
import math
import os
import pdb
import pickle
import re
import h5py
import numpy as np
import pandas as pd
from scipy import stats
from sklearn.preprocessing import StandardScaler
import torch
from torch.utils.data import Dataset
from utils.utils import generate_split, nth
class Generic_WSI_Survival_Dataset(Dataset):
def __init__(self,
csv_path = 'dataset_csv/ccrcc_clean.csv', mode = 'omic', apply_sig = False,
shuffle = False, seed = 7, print_info = True, n_bins = 4, ignore=[],
patient_strat=False, label_col = None, filter_dict = {}, eps=1e-6):
r"""
Generic_WSI_Survival_Dataset
Args:
csv_file (string): Path to the csv file with annotations.
shuffle (boolean): Whether to shuffle
seed (int): random seed for shuffling the data
print_info (boolean): Whether to print a summary of the dataset
label_dict (dict): Dictionary with key, value pairs for converting str labels to int
ignore (list): List containing class labels to ignore
"""
self.custom_test_ids = None
self.seed = seed
self.print_info = print_info
self.patient_strat = patient_strat
self.train_ids, self.val_ids, self.test_ids = (None, None, None)
self.data_dir = None
if shuffle:
np.random.seed(seed)
np.random.shuffle(slide_data)
slide_data = pd.read_csv(csv_path, low_memory=False)
#slide_data = slide_data.drop(['Unnamed: 0'], axis=1)
if 'case_id' not in slide_data:
slide_data.index = slide_data.index.str[:12]
slide_data['case_id'] = slide_data.index
slide_data = slide_data.reset_index(drop=True)
if not label_col:
label_col = 'survival_months'
else:
assert label_col in slide_data.columns
self.label_col = label_col
if "IDC" in slide_data['oncotree_code']: # must be BRCA (and if so, use only IDCs)
slide_data = slide_data[slide_data['oncotree_code'] == 'IDC']
patients_df = slide_data.drop_duplicates(['case_id']).copy()
uncensored_df = patients_df[patients_df['censorship'] < 1]
disc_labels, q_bins = pd.qcut(uncensored_df[label_col], q=n_bins, retbins=True, labels=False)
q_bins[-1] = slide_data[label_col].max() + eps
q_bins[0] = slide_data[label_col].min() - eps
disc_labels, q_bins = pd.cut(patients_df[label_col], bins=q_bins, retbins=True, labels=False, right=False, include_lowest=True)
patients_df.insert(2, 'label', disc_labels.values.astype(int))
patient_dict = {}
slide_data = slide_data.set_index('case_id')
for patient in patients_df['case_id']:
slide_ids = slide_data.loc[patient, 'slide_id']
if isinstance(slide_ids, str):
slide_ids = np.array(slide_ids).reshape(-1)
else:
slide_ids = slide_ids.values
patient_dict.update({patient:slide_ids})
self.patient_dict = patient_dict
slide_data = patients_df
slide_data.reset_index(drop=True, inplace=True)
slide_data = slide_data.assign(slide_id=slide_data['case_id'])
label_dict = {}
key_count = 0
for i in range(len(q_bins)-1):
for c in [0, 1]:
print('{} : {}'.format((i, c), key_count))
label_dict.update({(i, c):key_count})
key_count+=1
self.label_dict = label_dict
for i in slide_data.index:
key = slide_data.loc[i, 'label']
slide_data.at[i, 'disc_label'] = key
censorship = slide_data.loc[i, 'censorship']
key = (key, int(censorship))
slide_data.at[i, 'label'] = label_dict[key]
self.bins = q_bins
self.num_classes=len(self.label_dict)
patients_df = slide_data.drop_duplicates(['case_id'])
self.patient_data = {'case_id':patients_df['case_id'].values, 'label':patients_df['label'].values}
#new_cols = list(slide_data.columns[-2:]) + list(slide_data.columns[:-2]) ### ICCV
new_cols = list(slide_data.columns[-1:]) + list(slide_data.columns[:-1]) ### PORPOISE
slide_data = slide_data[new_cols]
self.slide_data = slide_data
metadata = ['disc_label', 'Unnamed: 0', 'case_id', 'label', 'slide_id', 'age', 'site', 'survival_months', 'censorship', 'is_female', 'oncotree_code', 'train']
self.metadata = slide_data.columns[:12]
for col in slide_data.drop(self.metadata, axis=1).columns:
if not pd.Series(col).str.contains('|_cnv|_rnaseq|_rna|_mut')[0]:
print(col)
#pdb.set_trace()
assert self.metadata.equals(pd.Index(metadata))
self.mode = mode
self.cls_ids_prep()
### ICCV discrepancies
# For BLCA, TPTEP1_rnaseq was accidentally appended to the metadata
#pdb.set_trace()
if print_info:
self.summarize()
### Signatures
self.apply_sig = apply_sig
if self.apply_sig:
self.signatures = pd.read_csv('./datasets_csv_sig/signatures.csv')
else:
self.signatures = None
if print_info:
self.summarize()
def cls_ids_prep(self):
r"""
"""
self.patient_cls_ids = [[] for i in range(self.num_classes)]
for i in range(self.num_classes):
self.patient_cls_ids[i] = np.where(self.patient_data['label'] == i)[0]
self.slide_cls_ids = [[] for i in range(self.num_classes)]
for i in range(self.num_classes):
self.slide_cls_ids[i] = np.where(self.slide_data['label'] == i)[0]
def patient_data_prep(self):
r"""
"""
patients = np.unique(np.array(self.slide_data['case_id'])) # get unique patients
patient_labels = []
for p in patients:
locations = self.slide_data[self.slide_data['case_id'] == p].index.tolist()
assert len(locations) > 0
label = self.slide_data['label'][locations[0]] # get patient label
patient_labels.append(label)
self.patient_data = {'case_id':patients, 'label':np.array(patient_labels)}
@staticmethod
def df_prep(data, n_bins, ignore, label_col):
r"""
"""
mask = data[label_col].isin(ignore)
data = data[~mask]
data.reset_index(drop=True, inplace=True)
disc_labels, bins = pd.cut(data[label_col], bins=n_bins)
return data, bins
def __len__(self):
if self.patient_strat:
return len(self.patient_data['case_id'])
else:
return len(self.slide_data)
def summarize(self):
print("label column: {}".format(self.label_col))
print("label dictionary: {}".format(self.label_dict))
print("number of classes: {}".format(self.num_classes))
print("slide-level counts: ", '\n', self.slide_data['label'].value_counts(sort = False))
for i in range(self.num_classes):
print('Patient-LVL; Number of samples registered in class %d: %d' % (i, self.patient_cls_ids[i].shape[0]))
print('Slide-LVL; Number of samples registered in class %d: %d' % (i, self.slide_cls_ids[i].shape[0]))
def get_split_from_df(self, all_splits: dict, split_key: str='train', scaler=None):
split = all_splits[split_key]
split = split.dropna().reset_index(drop=True)
if len(split) > 0:
mask = self.slide_data['slide_id'].isin(split.tolist())
df_slice = self.slide_data[mask].reset_index(drop=True)
split = Generic_Split(df_slice, metadata=self.metadata, mode=self.mode, signatures=self.signatures, data_dir=self.data_dir, label_col=self.label_col, patient_dict=self.patient_dict, num_classes=self.num_classes)
else:
split = None
return split
def return_splits(self, from_id: bool=True, csv_path: str=None):
if from_id:
raise NotImplementedError
else:
assert csv_path
all_splits = pd.read_csv(csv_path)
train_split = self.get_split_from_df(all_splits=all_splits, split_key='train')
val_split = self.get_split_from_df(all_splits=all_splits, split_key='val')
test_split = None #self.get_split_from_df(all_splits=all_splits, split_key='test')
### --> Normalizing Data
print("****** Normalizing Data ******")
scalers = train_split.get_scaler()
train_split.apply_scaler(scalers=scalers)
val_split.apply_scaler(scalers=scalers)
#test_split.apply_scaler(scalers=scalers)
### <--
return train_split, val_split#, test_split
def get_list(self, ids):
return self.slide_data['slide_id'][ids]
def getlabel(self, ids):
return self.slide_data['label'][ids]
def __getitem__(self, idx):
return None
def __getitem__(self, idx):
return None
class Generic_MIL_Survival_Dataset(Generic_WSI_Survival_Dataset):
def __init__(self, data_dir, mode: str='omic', **kwargs):
super(Generic_MIL_Survival_Dataset, self).__init__(**kwargs)
self.data_dir = data_dir
self.mode = mode
self.use_h5 = False
def load_from_h5(self, toggle):
self.use_h5 = toggle
def __getitem__(self, idx):
case_id = self.slide_data['case_id'][idx]
label = torch.Tensor([self.slide_data['disc_label'][idx]])
event_time = torch.Tensor([self.slide_data[self.label_col][idx]])
c = torch.Tensor([self.slide_data['censorship'][idx]])
slide_ids = self.patient_dict[case_id]
if type(self.data_dir) == dict:
source = self.slide_data['oncotree_code'][idx]
data_dir = self.data_dir[source]
else:
data_dir = self.data_dir
if not self.use_h5:
if self.data_dir:
if self.mode == 'path':
path_features = []
for slide_id in slide_ids:
wsi_path = os.path.join(data_dir, 'pt_files', '{}.pt'.format(slide_id.rstrip('.svs')))
wsi_bag = torch.load(wsi_path)
path_features.append(wsi_bag)
path_features = torch.cat(path_features, dim=0)
return (path_features, torch.zeros((1,1)), label, event_time, c)
elif self.mode == 'cluster':
path_features = []
cluster_ids = []
for slide_id in slide_ids:
wsi_path = os.path.join(data_dir, 'pt_files', '{}.pt'.format(slide_id.rstrip('.svs')))
wsi_bag = torch.load(wsi_path)
path_features.append(wsi_bag)
cluster_ids.extend(self.fname2ids[slide_id[:-4]+'.pt'])
path_features = torch.cat(path_features, dim=0)
cluster_ids = torch.Tensor(cluster_ids)
genomic_features = torch.tensor(self.genomic_features.iloc[idx])
return (path_features, cluster_ids, genomic_features, label, event_time, c)
elif self.mode == 'omic':
genomic_features = torch.tensor(self.genomic_features.iloc[idx])
return (torch.zeros((1,1)), genomic_features.unsqueeze(dim=0), label, event_time, c)
elif self.mode == 'pathomic':
path_features = []
for slide_id in slide_ids:
wsi_path = os.path.join(data_dir, 'pt_files', '{}.pt'.format(slide_id.rstrip('.svs')))
wsi_bag = torch.load(wsi_path)
path_features.append(wsi_bag)
path_features = torch.cat(path_features, dim=0)
genomic_features = torch.tensor(self.genomic_features.iloc[idx])
return (path_features, genomic_features.unsqueeze(dim=0), label, event_time, c)
elif self.mode == 'pathomic_fast':
casefeat_path = os.path.join(data_dir, f'split_{self.split_id}_case_pt', f'{case_id}.pt')
path_features = torch.load(casefeat_path)
genomic_features = torch.tensor(self.genomic_features.iloc[idx])
return (path_features, genomic_features.unsqueeze(dim=0), label, event_time, c)
elif self.mode == 'coattn':
path_features = []
for slide_id in slide_ids:
wsi_path = os.path.join(data_dir, 'pt_files', '{}.pt'.format(slide_id.rstrip('.svs')))
wsi_bag = torch.load(wsi_path)
path_features.append(wsi_bag)
path_features = torch.cat(path_features, dim=0)
omic1 = torch.tensor(self.genomic_features[self.omic_names[0]].iloc[idx])
omic2 = torch.tensor(self.genomic_features[self.omic_names[1]].iloc[idx])
omic3 = torch.tensor(self.genomic_features[self.omic_names[2]].iloc[idx])
omic4 = torch.tensor(self.genomic_features[self.omic_names[3]].iloc[idx])
omic5 = torch.tensor(self.genomic_features[self.omic_names[4]].iloc[idx])
omic6 = torch.tensor(self.genomic_features[self.omic_names[5]].iloc[idx])
return (path_features, omic1, omic2, omic3, omic4, omic5, omic6, label, event_time, c)
else:
raise NotImplementedError('Mode [%s] not implemented.' % self.mode)
else:
return slide_ids, label, event_time, c
class Generic_Split(Generic_MIL_Survival_Dataset):
def __init__(self, slide_data, metadata, mode,
signatures=None, data_dir=None, label_col=None, patient_dict=None, num_classes=2):
self.use_h5 = False
self.slide_data = slide_data
self.metadata = metadata
self.mode = mode
self.data_dir = data_dir
self.num_classes = num_classes
self.label_col = label_col
self.patient_dict = patient_dict
self.slide_cls_ids = [[] for i in range(self.num_classes)]
for i in range(self.num_classes):
self.slide_cls_ids[i] = np.where(self.slide_data['label'] == i)[0]
### --> Initializing genomic features in Generic Split
self.genomic_features = self.slide_data.drop(self.metadata, axis=1)
self.signatures = signatures
if mode == 'cluster':
with open(os.path.join(data_dir, 'fast_cluster_ids.pkl'), 'rb') as handle:
self.fname2ids = pickle.load(handle)
def series_intersection(s1, s2):
return pd.Series(list(set(s1) & set(s2)))
if self.signatures is not None:
self.omic_names = []
for col in self.signatures.columns:
omic = self.signatures[col].dropna().unique()
omic = np.concatenate([omic+mode for mode in ['_mut', '_cnv', '_rnaseq']])
omic = sorted(series_intersection(omic, self.genomic_features.columns))
self.omic_names.append(omic)
self.omic_sizes = [len(omic) for omic in self.omic_names]
print("Shape", self.genomic_features.shape)
### <--
def __len__(self):
return len(self.slide_data)
### --> Getting StandardScaler of self.genomic_features
def get_scaler(self):
scaler_omic = StandardScaler().fit(self.genomic_features)
return (scaler_omic,)
### <--
### --> Applying StandardScaler to self.genomic_features
def apply_scaler(self, scalers: tuple=None):
transformed = pd.DataFrame(scalers[0].transform(self.genomic_features))
transformed.columns = self.genomic_features.columns
self.genomic_features = transformed
### <--
def set_split_id(self, split_id):
self.split_id = split_id