Switch to side-by-side view

--- a
+++ b/tensorflow_neuralnet.ipynb
@@ -0,0 +1,2656 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 64,
+   "id": "ed5dfd63-c548-4fd1-a481-c9007d37afc3",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "%matplotlib notebook\n",
+    "\n",
+    "import pandas as pd\n",
+    "import numpy as np\n",
+    "import tensorflow as tf\n",
+    "from tensorflow.keras import layers\n",
+    "from matplotlib import pyplot as plt\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 74,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([ 0,  1,  1, ..., 50, 50, 50])"
+      ]
+     },
+     "execution_count": 74,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "train_df = pd.read_csv(\"data/betas_20000.csv\", index_col=0)\n",
+    "label =pd.read_csv(\"data/label_class.csv\", index_col=0)\n",
+    "mylabel=label.x.unique().tolist()\n",
+    "mydata=dict()\n",
+    "for i, label_temp in enumerate(mylabel):\n",
+    "    mydata[label_temp]=i\n",
+    "mydata_lable=[mydata[temp] for temp in label.x.tolist()]    \n",
+    "np.array(mydata_lable)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "(2801, 2000)"
+      ]
+     },
+     "execution_count": 13,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "train_df.shape"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 70,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def create_model(my_learning_rate):\n",
+    "  \"\"\"Create and compile a deep neural net.\"\"\"\n",
+    "  \n",
+    "  # All models in this course are sequential.\n",
+    "  model = tf.keras.models.Sequential()\n",
+    "  \n",
+    "  model.add(tf.keras.layers.Dense(units=136, activation='relu', input_shape=( 2000,)))\n",
+    "  \n",
+    "  # # Define a dropout regularization layer. \n",
+    "  model.add(tf.keras.layers.Dropout(rate=0.2))\n",
+    "  model.add(tf.keras.layers.Dense(units=91, activation='softmax'))     \n",
+    "                           \n",
+    "  # Construct the layers into a model that TensorFlow can execute.  \n",
+    "  # Notice that the loss function for multi-class classification\n",
+    "  # is different than the loss function for binary classification.  \n",
+    "  model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=my_learning_rate),\n",
+    "                loss=\"sparse_categorical_crossentropy\",\n",
+    "                metrics=['accuracy'])\n",
+    "  \n",
+    "  return model    \n",
+    "\n",
+    "def train_model(model, train_features, train_label, epochs,\n",
+    "                batch_size=None, validation_split=0.1):\n",
+    "  \"\"\"Train the model by feeding it data.\"\"\"\n",
+    "\n",
+    "  history = model.fit(x=train_features, y=train_label, batch_size=batch_size,\n",
+    "                      epochs=epochs, shuffle=True, \n",
+    "                      validation_split=validation_split)\n",
+    " \n",
+    "  # To track the progression of training, gather a snapshot\n",
+    "  # of the model's metrics at each epoch. \n",
+    "  epochs = history.epoch\n",
+    "  hist = pd.DataFrame(history.history)\n",
+    "\n",
+    "  return epochs, hist    \n",
+    "\n",
+    "def plot_curve(epochs, hist, list_of_metrics):\n",
+    "    plt.figure()\n",
+    "    plt.xlabel(\"Epoch\")\n",
+    "    plt.ylabel(\"Value\")\n",
+    "    \n",
+    "    for m in list_of_metrics:\n",
+    "        x=hist[m]\n",
+    "        plt.plot(epochs[1:], x[1:], label=m)\n",
+    "        \n",
+    "    plt.legend()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 71,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 1/500\n",
+      "3/3 [==============================] - 0s 65ms/step - loss: 8.1022 - accuracy: 0.0304 - val_loss: 10.8629 - val_accuracy: 0.0250\n",
+      "Epoch 2/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 7.3115 - accuracy: 0.0929 - val_loss: 4.8613 - val_accuracy: 0.0838\n",
+      "Epoch 3/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 3.8796 - accuracy: 0.2045 - val_loss: 4.1189 - val_accuracy: 0.1301\n",
+      "Epoch 4/500\n",
+      "3/3 [==============================] - 0s 19ms/step - loss: 3.2068 - accuracy: 0.2509 - val_loss: 4.2306 - val_accuracy: 0.1301\n",
+      "Epoch 5/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 2.9522 - accuracy: 0.2875 - val_loss: 4.0535 - val_accuracy: 0.1854\n",
+      "Epoch 6/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 2.6109 - accuracy: 0.3545 - val_loss: 3.9284 - val_accuracy: 0.2282\n",
+      "Epoch 7/500\n",
+      "3/3 [==============================] - 1s 509ms/step - loss: 2.3519 - accuracy: 0.3920 - val_loss: 3.8262 - val_accuracy: 0.2317\n",
+      "Epoch 8/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 2.2000 - accuracy: 0.4179 - val_loss: 3.6234 - val_accuracy: 0.2335\n",
+      "Epoch 9/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 2.0049 - accuracy: 0.4629 - val_loss: 3.4767 - val_accuracy: 0.2389\n",
+      "Epoch 10/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 1.8725 - accuracy: 0.4786 - val_loss: 3.4561 - val_accuracy: 0.2816\n",
+      "Epoch 11/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 1.7198 - accuracy: 0.5089 - val_loss: 3.4203 - val_accuracy: 0.3012\n",
+      "Epoch 12/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 1.6167 - accuracy: 0.5353 - val_loss: 3.1485 - val_accuracy: 0.3547\n",
+      "Epoch 13/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 1.4885 - accuracy: 0.5728 - val_loss: 3.0569 - val_accuracy: 0.4135\n",
+      "Epoch 14/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 1.3688 - accuracy: 0.6121 - val_loss: 3.0551 - val_accuracy: 0.3922\n",
+      "Epoch 15/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 1.2810 - accuracy: 0.6116 - val_loss: 2.9558 - val_accuracy: 0.4385\n",
+      "Epoch 16/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 1.1852 - accuracy: 0.6527 - val_loss: 2.8550 - val_accuracy: 0.4920\n",
+      "Epoch 17/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 1.1080 - accuracy: 0.6759 - val_loss: 2.7942 - val_accuracy: 0.5294\n",
+      "Epoch 18/500\n",
+      "3/3 [==============================] - 1s 386ms/step - loss: 1.0401 - accuracy: 0.6951 - val_loss: 2.8304 - val_accuracy: 0.5258\n",
+      "Epoch 19/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 1.0043 - accuracy: 0.6964 - val_loss: 2.8021 - val_accuracy: 0.5615\n",
+      "Epoch 20/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.9464 - accuracy: 0.7134 - val_loss: 2.7443 - val_accuracy: 0.5686\n",
+      "Epoch 21/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.8989 - accuracy: 0.7277 - val_loss: 2.7179 - val_accuracy: 0.5865\n",
+      "Epoch 22/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.8427 - accuracy: 0.7312 - val_loss: 2.7421 - val_accuracy: 0.6471\n",
+      "Epoch 23/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.8217 - accuracy: 0.7549 - val_loss: 2.7403 - val_accuracy: 0.6043\n",
+      "Epoch 24/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.7731 - accuracy: 0.7563 - val_loss: 2.7153 - val_accuracy: 0.6043\n",
+      "Epoch 25/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.7580 - accuracy: 0.7612 - val_loss: 2.7835 - val_accuracy: 0.5793\n",
+      "Epoch 26/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.7343 - accuracy: 0.7580 - val_loss: 2.7090 - val_accuracy: 0.6239\n",
+      "Epoch 27/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.7079 - accuracy: 0.7737 - val_loss: 2.6946 - val_accuracy: 0.6506\n",
+      "Epoch 28/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.6618 - accuracy: 0.7897 - val_loss: 2.7342 - val_accuracy: 0.6774\n",
+      "Epoch 29/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.6673 - accuracy: 0.7871 - val_loss: 2.7232 - val_accuracy: 0.6578\n",
+      "Epoch 30/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.6272 - accuracy: 0.8054 - val_loss: 2.7842 - val_accuracy: 0.6399\n",
+      "Epoch 31/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.6284 - accuracy: 0.8009 - val_loss: 2.7238 - val_accuracy: 0.6684\n",
+      "Epoch 32/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.5961 - accuracy: 0.8058 - val_loss: 2.7375 - val_accuracy: 0.6595\n",
+      "Epoch 33/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.6083 - accuracy: 0.8085 - val_loss: 2.7851 - val_accuracy: 0.6524\n",
+      "Epoch 34/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.5674 - accuracy: 0.8138 - val_loss: 2.7163 - val_accuracy: 0.6702\n",
+      "Epoch 35/500\n",
+      "3/3 [==============================] - 0s 153ms/step - loss: 0.5744 - accuracy: 0.8085 - val_loss: 2.6751 - val_accuracy: 0.6952\n",
+      "Epoch 36/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.5685 - accuracy: 0.8174 - val_loss: 2.7026 - val_accuracy: 0.6881\n",
+      "Epoch 37/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.5261 - accuracy: 0.8339 - val_loss: 2.7768 - val_accuracy: 0.7184\n",
+      "Epoch 38/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.5189 - accuracy: 0.8388 - val_loss: 2.7659 - val_accuracy: 0.7112\n",
+      "Epoch 39/500\n",
+      "3/3 [==============================] - 0s 19ms/step - loss: 0.5318 - accuracy: 0.8353 - val_loss: 2.6409 - val_accuracy: 0.7094\n",
+      "Epoch 40/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.5067 - accuracy: 0.8420 - val_loss: 2.6429 - val_accuracy: 0.7558\n",
+      "Epoch 41/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.4789 - accuracy: 0.8504 - val_loss: 2.7366 - val_accuracy: 0.7219\n",
+      "Epoch 42/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.4881 - accuracy: 0.8446 - val_loss: 2.6574 - val_accuracy: 0.7433\n",
+      "Epoch 43/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.4512 - accuracy: 0.8554 - val_loss: 2.6640 - val_accuracy: 0.7558\n",
+      "Epoch 44/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.4463 - accuracy: 0.8571 - val_loss: 2.7401 - val_accuracy: 0.7433\n",
+      "Epoch 45/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.4672 - accuracy: 0.8420 - val_loss: 2.7048 - val_accuracy: 0.7718\n",
+      "Epoch 46/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.4606 - accuracy: 0.8549 - val_loss: 2.7248 - val_accuracy: 0.7433\n",
+      "Epoch 47/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.4456 - accuracy: 0.8558 - val_loss: 2.7857 - val_accuracy: 0.7629\n",
+      "Epoch 48/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.4397 - accuracy: 0.8540 - val_loss: 2.6798 - val_accuracy: 0.7558\n",
+      "Epoch 49/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.4188 - accuracy: 0.8634 - val_loss: 2.7205 - val_accuracy: 0.7558\n",
+      "Epoch 50/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.3832 - accuracy: 0.8835 - val_loss: 2.7230 - val_accuracy: 0.7629\n",
+      "Epoch 51/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.4038 - accuracy: 0.8705 - val_loss: 2.7941 - val_accuracy: 0.7718\n",
+      "Epoch 52/500\n",
+      "3/3 [==============================] - 0s 19ms/step - loss: 0.4088 - accuracy: 0.8687 - val_loss: 2.8485 - val_accuracy: 0.7611\n",
+      "Epoch 53/500\n",
+      "3/3 [==============================] - 0s 14ms/step - loss: 0.3845 - accuracy: 0.8759 - val_loss: 2.7727 - val_accuracy: 0.7487\n",
+      "Epoch 54/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.3841 - accuracy: 0.8772 - val_loss: 2.7037 - val_accuracy: 0.7540\n",
+      "Epoch 55/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.3663 - accuracy: 0.8804 - val_loss: 2.6858 - val_accuracy: 0.7611\n",
+      "Epoch 56/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.3764 - accuracy: 0.8799 - val_loss: 2.7975 - val_accuracy: 0.7772\n",
+      "Epoch 57/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.3831 - accuracy: 0.8781 - val_loss: 2.7318 - val_accuracy: 0.7932\n",
+      "Epoch 58/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.3599 - accuracy: 0.8911 - val_loss: 2.7317 - val_accuracy: 0.7897\n",
+      "Epoch 59/500\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.3606 - accuracy: 0.8830 - val_loss: 2.7506 - val_accuracy: 0.7986\n",
+      "Epoch 60/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.3203 - accuracy: 0.9027 - val_loss: 2.7527 - val_accuracy: 0.7861\n",
+      "Epoch 61/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.3547 - accuracy: 0.8920 - val_loss: 2.7845 - val_accuracy: 0.7754\n",
+      "Epoch 62/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.3467 - accuracy: 0.8915 - val_loss: 2.8740 - val_accuracy: 0.7736\n",
+      "Epoch 63/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.3388 - accuracy: 0.8884 - val_loss: 2.7419 - val_accuracy: 0.7736\n",
+      "Epoch 64/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.3352 - accuracy: 0.8973 - val_loss: 2.7673 - val_accuracy: 0.7950\n",
+      "Epoch 65/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.3243 - accuracy: 0.8973 - val_loss: 2.8504 - val_accuracy: 0.7718\n",
+      "Epoch 66/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.3393 - accuracy: 0.8866 - val_loss: 2.7669 - val_accuracy: 0.7879\n",
+      "Epoch 67/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.3233 - accuracy: 0.8942 - val_loss: 2.7359 - val_accuracy: 0.7950\n",
+      "Epoch 68/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.3131 - accuracy: 0.9085 - val_loss: 2.7986 - val_accuracy: 0.8039\n",
+      "Epoch 69/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2916 - accuracy: 0.9067 - val_loss: 2.7160 - val_accuracy: 0.7932\n",
+      "Epoch 70/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.2812 - accuracy: 0.9156 - val_loss: 2.7732 - val_accuracy: 0.8075\n",
+      "Epoch 71/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2910 - accuracy: 0.9062 - val_loss: 2.8327 - val_accuracy: 0.7986\n",
+      "Epoch 72/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.2953 - accuracy: 0.9107 - val_loss: 2.7406 - val_accuracy: 0.7914\n",
+      "Epoch 73/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2830 - accuracy: 0.9196 - val_loss: 2.7630 - val_accuracy: 0.8093\n",
+      "Epoch 74/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2836 - accuracy: 0.9121 - val_loss: 2.7631 - val_accuracy: 0.7879\n",
+      "Epoch 75/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.2727 - accuracy: 0.9112 - val_loss: 2.7862 - val_accuracy: 0.8039\n",
+      "Epoch 76/500\n",
+      "3/3 [==============================] - 0s 153ms/step - loss: 0.2810 - accuracy: 0.9179 - val_loss: 2.7986 - val_accuracy: 0.7897\n",
+      "Epoch 77/500\n",
+      "3/3 [==============================] - 0s 104ms/step - loss: 0.2798 - accuracy: 0.9098 - val_loss: 2.7958 - val_accuracy: 0.8093\n",
+      "Epoch 78/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.2669 - accuracy: 0.9125 - val_loss: 2.7845 - val_accuracy: 0.8004\n",
+      "Epoch 79/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.2597 - accuracy: 0.9152 - val_loss: 2.8868 - val_accuracy: 0.7843\n",
+      "Epoch 80/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2689 - accuracy: 0.9165 - val_loss: 2.8603 - val_accuracy: 0.7968\n",
+      "Epoch 81/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.2551 - accuracy: 0.9192 - val_loss: 2.9133 - val_accuracy: 0.7968\n",
+      "Epoch 82/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2607 - accuracy: 0.9165 - val_loss: 2.9144 - val_accuracy: 0.7950\n",
+      "Epoch 83/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.2439 - accuracy: 0.9210 - val_loss: 2.8191 - val_accuracy: 0.8075\n",
+      "Epoch 84/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2671 - accuracy: 0.9192 - val_loss: 2.9166 - val_accuracy: 0.8004\n",
+      "Epoch 85/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.2421 - accuracy: 0.9250 - val_loss: 2.9474 - val_accuracy: 0.8128\n",
+      "Epoch 86/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.2479 - accuracy: 0.9214 - val_loss: 2.8581 - val_accuracy: 0.7914\n",
+      "Epoch 87/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2603 - accuracy: 0.9138 - val_loss: 2.8995 - val_accuracy: 0.8200\n",
+      "Epoch 88/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2462 - accuracy: 0.9263 - val_loss: 2.9085 - val_accuracy: 0.8075\n",
+      "Epoch 89/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.2258 - accuracy: 0.9321 - val_loss: 2.9171 - val_accuracy: 0.8271\n",
+      "Epoch 90/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2435 - accuracy: 0.9232 - val_loss: 2.8813 - val_accuracy: 0.7986\n",
+      "Epoch 91/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2352 - accuracy: 0.9277 - val_loss: 2.9242 - val_accuracy: 0.7843\n",
+      "Epoch 92/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.2367 - accuracy: 0.9219 - val_loss: 2.8809 - val_accuracy: 0.8111\n",
+      "Epoch 93/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.2276 - accuracy: 0.9330 - val_loss: 2.8483 - val_accuracy: 0.8057\n",
+      "Epoch 94/500\n",
+      "3/3 [==============================] - 0s 14ms/step - loss: 0.2246 - accuracy: 0.9335 - val_loss: 2.9111 - val_accuracy: 0.8004\n",
+      "Epoch 95/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2268 - accuracy: 0.9286 - val_loss: 2.9409 - val_accuracy: 0.7932\n",
+      "Epoch 96/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2320 - accuracy: 0.9312 - val_loss: 2.8713 - val_accuracy: 0.8075\n",
+      "Epoch 97/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2215 - accuracy: 0.9259 - val_loss: 2.8130 - val_accuracy: 0.7986\n",
+      "Epoch 98/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2245 - accuracy: 0.9277 - val_loss: 2.9014 - val_accuracy: 0.8182\n",
+      "Epoch 99/500\n",
+      "3/3 [==============================] - 0s 19ms/step - loss: 0.2245 - accuracy: 0.9295 - val_loss: 2.9285 - val_accuracy: 0.8217\n",
+      "Epoch 100/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2149 - accuracy: 0.9362 - val_loss: 2.9053 - val_accuracy: 0.8182\n",
+      "Epoch 101/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.2259 - accuracy: 0.9246 - val_loss: 2.9373 - val_accuracy: 0.7932\n",
+      "Epoch 102/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2328 - accuracy: 0.9250 - val_loss: 2.9954 - val_accuracy: 0.8164\n",
+      "Epoch 103/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.2329 - accuracy: 0.9214 - val_loss: 2.9089 - val_accuracy: 0.8164\n",
+      "Epoch 104/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.2065 - accuracy: 0.9384 - val_loss: 3.0448 - val_accuracy: 0.7897\n",
+      "Epoch 105/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2068 - accuracy: 0.9344 - val_loss: 3.0119 - val_accuracy: 0.8146\n",
+      "Epoch 106/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2238 - accuracy: 0.9259 - val_loss: 2.9144 - val_accuracy: 0.8164\n",
+      "Epoch 107/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.2243 - accuracy: 0.9263 - val_loss: 3.0165 - val_accuracy: 0.7843\n",
+      "Epoch 108/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.2085 - accuracy: 0.9357 - val_loss: 3.0623 - val_accuracy: 0.8164\n",
+      "Epoch 109/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1828 - accuracy: 0.9379 - val_loss: 3.1144 - val_accuracy: 0.8164\n",
+      "Epoch 110/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2224 - accuracy: 0.9304 - val_loss: 3.0173 - val_accuracy: 0.7914\n",
+      "Epoch 111/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.2091 - accuracy: 0.9330 - val_loss: 2.8703 - val_accuracy: 0.7932\n",
+      "Epoch 112/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.2044 - accuracy: 0.9384 - val_loss: 2.9790 - val_accuracy: 0.8128\n",
+      "Epoch 113/500\n",
+      "3/3 [==============================] - 0s 134ms/step - loss: 0.1822 - accuracy: 0.9397 - val_loss: 3.0940 - val_accuracy: 0.7932\n",
+      "Epoch 114/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1925 - accuracy: 0.9429 - val_loss: 3.1540 - val_accuracy: 0.8039\n",
+      "Epoch 115/500\n",
+      "3/3 [==============================] - 0s 220ms/step - loss: 0.2025 - accuracy: 0.9362 - val_loss: 2.9488 - val_accuracy: 0.8217\n",
+      "Epoch 116/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1884 - accuracy: 0.9411 - val_loss: 3.0015 - val_accuracy: 0.8200\n",
+      "Epoch 117/500\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.1994 - accuracy: 0.9402 - val_loss: 3.0726 - val_accuracy: 0.8200\n",
+      "Epoch 118/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1901 - accuracy: 0.9455 - val_loss: 3.0537 - val_accuracy: 0.8093\n",
+      "Epoch 119/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1750 - accuracy: 0.9487 - val_loss: 3.0673 - val_accuracy: 0.8271\n",
+      "Epoch 120/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1936 - accuracy: 0.9353 - val_loss: 3.0625 - val_accuracy: 0.8111\n",
+      "Epoch 121/500\n",
+      "3/3 [==============================] - 0s 149ms/step - loss: 0.1665 - accuracy: 0.9482 - val_loss: 3.1008 - val_accuracy: 0.8004\n",
+      "Epoch 122/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1895 - accuracy: 0.9335 - val_loss: 3.1380 - val_accuracy: 0.8200\n",
+      "Epoch 123/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1767 - accuracy: 0.9451 - val_loss: 3.1362 - val_accuracy: 0.7914\n",
+      "Epoch 124/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.1946 - accuracy: 0.9339 - val_loss: 2.9370 - val_accuracy: 0.8235\n",
+      "Epoch 125/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1923 - accuracy: 0.9393 - val_loss: 3.0337 - val_accuracy: 0.8235\n",
+      "Epoch 126/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1753 - accuracy: 0.9473 - val_loss: 3.1784 - val_accuracy: 0.8324\n",
+      "Epoch 127/500\n",
+      "3/3 [==============================] - 0s 126ms/step - loss: 0.2024 - accuracy: 0.9397 - val_loss: 3.0469 - val_accuracy: 0.8324\n",
+      "Epoch 128/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1813 - accuracy: 0.9424 - val_loss: 3.0067 - val_accuracy: 0.8182\n",
+      "Epoch 129/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2073 - accuracy: 0.9362 - val_loss: 3.0784 - val_accuracy: 0.8253\n",
+      "Epoch 130/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1718 - accuracy: 0.9482 - val_loss: 3.0529 - val_accuracy: 0.8146\n",
+      "Epoch 131/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1647 - accuracy: 0.9446 - val_loss: 2.9477 - val_accuracy: 0.8128\n",
+      "Epoch 132/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1883 - accuracy: 0.9478 - val_loss: 2.8586 - val_accuracy: 0.7950\n",
+      "Epoch 133/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1725 - accuracy: 0.9429 - val_loss: 3.1615 - val_accuracy: 0.8093\n",
+      "Epoch 134/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1935 - accuracy: 0.9362 - val_loss: 3.1727 - val_accuracy: 0.8200\n",
+      "Epoch 135/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1727 - accuracy: 0.9411 - val_loss: 3.0221 - val_accuracy: 0.7968\n",
+      "Epoch 136/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1700 - accuracy: 0.9455 - val_loss: 3.1363 - val_accuracy: 0.8057\n",
+      "Epoch 137/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.1830 - accuracy: 0.9375 - val_loss: 3.1210 - val_accuracy: 0.8128\n",
+      "Epoch 138/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1953 - accuracy: 0.9375 - val_loss: 3.3607 - val_accuracy: 0.8039\n",
+      "Epoch 139/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.2002 - accuracy: 0.9339 - val_loss: 3.2200 - val_accuracy: 0.7914\n",
+      "Epoch 140/500\n",
+      "3/3 [==============================] - 0s 19ms/step - loss: 0.1911 - accuracy: 0.9362 - val_loss: 3.1141 - val_accuracy: 0.7968\n",
+      "Epoch 141/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1854 - accuracy: 0.9411 - val_loss: 3.1925 - val_accuracy: 0.8164\n",
+      "Epoch 142/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1685 - accuracy: 0.9527 - val_loss: 3.2378 - val_accuracy: 0.8004\n",
+      "Epoch 143/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1664 - accuracy: 0.9438 - val_loss: 3.1528 - val_accuracy: 0.8021\n",
+      "Epoch 144/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.1615 - accuracy: 0.9487 - val_loss: 3.0998 - val_accuracy: 0.8200\n",
+      "Epoch 145/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1657 - accuracy: 0.9487 - val_loss: 3.1144 - val_accuracy: 0.8146\n",
+      "Epoch 146/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1693 - accuracy: 0.9420 - val_loss: 3.0132 - val_accuracy: 0.8289\n",
+      "Epoch 147/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1471 - accuracy: 0.9540 - val_loss: 3.1395 - val_accuracy: 0.8235\n",
+      "Epoch 148/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1558 - accuracy: 0.9580 - val_loss: 3.1889 - val_accuracy: 0.8128\n",
+      "Epoch 149/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1562 - accuracy: 0.9513 - val_loss: 2.9373 - val_accuracy: 0.8307\n",
+      "Epoch 150/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1637 - accuracy: 0.9464 - val_loss: 2.9766 - val_accuracy: 0.8075\n",
+      "Epoch 151/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1509 - accuracy: 0.9500 - val_loss: 3.1998 - val_accuracy: 0.8182\n",
+      "Epoch 152/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1811 - accuracy: 0.9375 - val_loss: 3.1149 - val_accuracy: 0.8164\n",
+      "Epoch 153/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1639 - accuracy: 0.9451 - val_loss: 3.0750 - val_accuracy: 0.8111\n",
+      "Epoch 154/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1711 - accuracy: 0.9451 - val_loss: 3.1738 - val_accuracy: 0.8004\n",
+      "Epoch 155/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1435 - accuracy: 0.9540 - val_loss: 3.2347 - val_accuracy: 0.8111\n",
+      "Epoch 156/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1481 - accuracy: 0.9518 - val_loss: 3.2279 - val_accuracy: 0.8075\n",
+      "Epoch 157/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1564 - accuracy: 0.9442 - val_loss: 3.1658 - val_accuracy: 0.7950\n",
+      "Epoch 158/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1698 - accuracy: 0.9438 - val_loss: 3.0846 - val_accuracy: 0.8200\n",
+      "Epoch 159/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1358 - accuracy: 0.9598 - val_loss: 3.4012 - val_accuracy: 0.8093\n",
+      "Epoch 160/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1670 - accuracy: 0.9451 - val_loss: 3.1913 - val_accuracy: 0.8111\n",
+      "Epoch 161/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1561 - accuracy: 0.9509 - val_loss: 2.7940 - val_accuracy: 0.8146\n",
+      "Epoch 162/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1648 - accuracy: 0.9469 - val_loss: 2.9987 - val_accuracy: 0.8004\n",
+      "Epoch 163/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1511 - accuracy: 0.9464 - val_loss: 3.2705 - val_accuracy: 0.8200\n",
+      "Epoch 164/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1742 - accuracy: 0.9438 - val_loss: 3.1697 - val_accuracy: 0.8324\n",
+      "Epoch 165/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1407 - accuracy: 0.9500 - val_loss: 3.0942 - val_accuracy: 0.8307\n",
+      "Epoch 166/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1362 - accuracy: 0.9513 - val_loss: 3.0865 - val_accuracy: 0.8182\n",
+      "Epoch 167/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1515 - accuracy: 0.9478 - val_loss: 3.1520 - val_accuracy: 0.8111\n",
+      "Epoch 168/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1569 - accuracy: 0.9513 - val_loss: 3.1619 - val_accuracy: 0.8289\n",
+      "Epoch 169/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1419 - accuracy: 0.9496 - val_loss: 3.0921 - val_accuracy: 0.8253\n",
+      "Epoch 170/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1451 - accuracy: 0.9491 - val_loss: 3.1316 - val_accuracy: 0.8217\n",
+      "Epoch 171/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1282 - accuracy: 0.9545 - val_loss: 3.1724 - val_accuracy: 0.8217\n",
+      "Epoch 172/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1235 - accuracy: 0.9612 - val_loss: 3.0868 - val_accuracy: 0.8324\n",
+      "Epoch 173/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1428 - accuracy: 0.9513 - val_loss: 3.1058 - val_accuracy: 0.8324\n",
+      "Epoch 174/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1589 - accuracy: 0.9504 - val_loss: 3.1856 - val_accuracy: 0.8164\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 175/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1604 - accuracy: 0.9504 - val_loss: 3.1547 - val_accuracy: 0.8217\n",
+      "Epoch 176/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1324 - accuracy: 0.9589 - val_loss: 3.3192 - val_accuracy: 0.8128\n",
+      "Epoch 177/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1633 - accuracy: 0.9487 - val_loss: 3.1716 - val_accuracy: 0.8146\n",
+      "Epoch 178/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1290 - accuracy: 0.9576 - val_loss: 3.1262 - val_accuracy: 0.8182\n",
+      "Epoch 179/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1627 - accuracy: 0.9500 - val_loss: 3.1685 - val_accuracy: 0.8271\n",
+      "Epoch 180/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.1388 - accuracy: 0.9545 - val_loss: 3.2582 - val_accuracy: 0.8307\n",
+      "Epoch 181/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1535 - accuracy: 0.9500 - val_loss: 3.3198 - val_accuracy: 0.8324\n",
+      "Epoch 182/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1307 - accuracy: 0.9585 - val_loss: 3.2408 - val_accuracy: 0.8217\n",
+      "Epoch 183/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1512 - accuracy: 0.9509 - val_loss: 3.1087 - val_accuracy: 0.8182\n",
+      "Epoch 184/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1336 - accuracy: 0.9563 - val_loss: 3.1705 - val_accuracy: 0.8324\n",
+      "Epoch 185/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1489 - accuracy: 0.9549 - val_loss: 3.2197 - val_accuracy: 0.8253\n",
+      "Epoch 186/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1416 - accuracy: 0.9540 - val_loss: 3.2992 - val_accuracy: 0.8289\n",
+      "Epoch 187/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1260 - accuracy: 0.9634 - val_loss: 3.3130 - val_accuracy: 0.8164\n",
+      "Epoch 188/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1442 - accuracy: 0.9460 - val_loss: 3.1350 - val_accuracy: 0.8235\n",
+      "Epoch 189/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1337 - accuracy: 0.9545 - val_loss: 3.1752 - val_accuracy: 0.8146\n",
+      "Epoch 190/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1377 - accuracy: 0.9522 - val_loss: 3.3670 - val_accuracy: 0.8217\n",
+      "Epoch 191/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1259 - accuracy: 0.9625 - val_loss: 3.3380 - val_accuracy: 0.8271\n",
+      "Epoch 192/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1272 - accuracy: 0.9571 - val_loss: 3.2256 - val_accuracy: 0.8253\n",
+      "Epoch 193/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1243 - accuracy: 0.9616 - val_loss: 3.3936 - val_accuracy: 0.8111\n",
+      "Epoch 194/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1229 - accuracy: 0.9625 - val_loss: 3.4608 - val_accuracy: 0.8128\n",
+      "Epoch 195/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1194 - accuracy: 0.9580 - val_loss: 3.2403 - val_accuracy: 0.8360\n",
+      "Epoch 196/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1349 - accuracy: 0.9571 - val_loss: 3.2221 - val_accuracy: 0.8253\n",
+      "Epoch 197/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.1219 - accuracy: 0.9607 - val_loss: 3.3777 - val_accuracy: 0.8128\n",
+      "Epoch 198/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1302 - accuracy: 0.9567 - val_loss: 3.3118 - val_accuracy: 0.8378\n",
+      "Epoch 199/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1288 - accuracy: 0.9554 - val_loss: 3.2091 - val_accuracy: 0.8342\n",
+      "Epoch 200/500\n",
+      "3/3 [==============================] - 0s 19ms/step - loss: 0.1283 - accuracy: 0.9563 - val_loss: 3.1435 - val_accuracy: 0.8289\n",
+      "Epoch 201/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1181 - accuracy: 0.9656 - val_loss: 3.2117 - val_accuracy: 0.8360\n",
+      "Epoch 202/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1094 - accuracy: 0.9652 - val_loss: 3.2909 - val_accuracy: 0.8182\n",
+      "Epoch 203/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1297 - accuracy: 0.9554 - val_loss: 3.2943 - val_accuracy: 0.8182\n",
+      "Epoch 204/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1320 - accuracy: 0.9558 - val_loss: 3.1315 - val_accuracy: 0.8271\n",
+      "Epoch 205/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1358 - accuracy: 0.9540 - val_loss: 3.2054 - val_accuracy: 0.8289\n",
+      "Epoch 206/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1166 - accuracy: 0.9621 - val_loss: 3.4830 - val_accuracy: 0.8253\n",
+      "Epoch 207/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1214 - accuracy: 0.9594 - val_loss: 3.4861 - val_accuracy: 0.8271\n",
+      "Epoch 208/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1242 - accuracy: 0.9594 - val_loss: 3.1450 - val_accuracy: 0.8324\n",
+      "Epoch 209/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1432 - accuracy: 0.9531 - val_loss: 3.2652 - val_accuracy: 0.8217\n",
+      "Epoch 210/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1401 - accuracy: 0.9549 - val_loss: 3.2223 - val_accuracy: 0.7897\n",
+      "Epoch 211/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1426 - accuracy: 0.9531 - val_loss: 3.2312 - val_accuracy: 0.8093\n",
+      "Epoch 212/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1471 - accuracy: 0.9487 - val_loss: 3.3002 - val_accuracy: 0.8235\n",
+      "Epoch 213/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1490 - accuracy: 0.9500 - val_loss: 3.2000 - val_accuracy: 0.8093\n",
+      "Epoch 214/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1474 - accuracy: 0.9482 - val_loss: 3.2497 - val_accuracy: 0.8075\n",
+      "Epoch 215/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1592 - accuracy: 0.9438 - val_loss: 3.2296 - val_accuracy: 0.8093\n",
+      "Epoch 216/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1495 - accuracy: 0.9522 - val_loss: 2.9942 - val_accuracy: 0.7968\n",
+      "Epoch 217/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1706 - accuracy: 0.9433 - val_loss: 3.2004 - val_accuracy: 0.8111\n",
+      "Epoch 218/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1529 - accuracy: 0.9540 - val_loss: 3.4679 - val_accuracy: 0.8039\n",
+      "Epoch 219/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1556 - accuracy: 0.9496 - val_loss: 3.4337 - val_accuracy: 0.8111\n",
+      "Epoch 220/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1544 - accuracy: 0.9496 - val_loss: 3.0612 - val_accuracy: 0.8200\n",
+      "Epoch 221/500\n",
+      "3/3 [==============================] - 0s 27ms/step - loss: 0.1630 - accuracy: 0.9429 - val_loss: 3.1624 - val_accuracy: 0.7986\n",
+      "Epoch 222/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1723 - accuracy: 0.9402 - val_loss: 3.4154 - val_accuracy: 0.8093\n",
+      "Epoch 223/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1404 - accuracy: 0.9531 - val_loss: 3.4807 - val_accuracy: 0.7968\n",
+      "Epoch 224/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1449 - accuracy: 0.9522 - val_loss: 3.2386 - val_accuracy: 0.8039\n",
+      "Epoch 225/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1395 - accuracy: 0.9522 - val_loss: 3.1111 - val_accuracy: 0.8039\n",
+      "Epoch 226/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1783 - accuracy: 0.9362 - val_loss: 3.1432 - val_accuracy: 0.8111\n",
+      "Epoch 227/500\n",
+      "3/3 [==============================] - 0s 21ms/step - loss: 0.1338 - accuracy: 0.9571 - val_loss: 3.4125 - val_accuracy: 0.7986\n",
+      "Epoch 228/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1360 - accuracy: 0.9554 - val_loss: 3.5563 - val_accuracy: 0.7932\n",
+      "Epoch 229/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.1282 - accuracy: 0.9563 - val_loss: 3.1964 - val_accuracy: 0.7986\n",
+      "Epoch 230/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1381 - accuracy: 0.9549 - val_loss: 3.0907 - val_accuracy: 0.8182\n",
+      "Epoch 231/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1285 - accuracy: 0.9598 - val_loss: 3.3284 - val_accuracy: 0.8021\n",
+      "Epoch 232/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1377 - accuracy: 0.9504 - val_loss: 3.3697 - val_accuracy: 0.8039\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 233/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1235 - accuracy: 0.9563 - val_loss: 3.2361 - val_accuracy: 0.8182\n",
+      "Epoch 234/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1398 - accuracy: 0.9563 - val_loss: 3.1242 - val_accuracy: 0.8128\n",
+      "Epoch 235/500\n",
+      "3/3 [==============================] - 0s 20ms/step - loss: 0.1236 - accuracy: 0.9580 - val_loss: 3.1575 - val_accuracy: 0.8289\n",
+      "Epoch 236/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1406 - accuracy: 0.9558 - val_loss: 3.2175 - val_accuracy: 0.8164\n",
+      "Epoch 237/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1277 - accuracy: 0.9603 - val_loss: 3.3241 - val_accuracy: 0.8182\n",
+      "Epoch 238/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1246 - accuracy: 0.9589 - val_loss: 3.2664 - val_accuracy: 0.8414\n",
+      "Epoch 239/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1213 - accuracy: 0.9585 - val_loss: 3.3026 - val_accuracy: 0.7968\n",
+      "Epoch 240/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1289 - accuracy: 0.9567 - val_loss: 3.4185 - val_accuracy: 0.7950\n",
+      "Epoch 241/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1281 - accuracy: 0.9563 - val_loss: 3.4039 - val_accuracy: 0.7986\n",
+      "Epoch 242/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1220 - accuracy: 0.9612 - val_loss: 3.3447 - val_accuracy: 0.7986\n",
+      "Epoch 243/500\n",
+      "3/3 [==============================] - 1s 258ms/step - loss: 0.1522 - accuracy: 0.9513 - val_loss: 3.3611 - val_accuracy: 0.7861\n",
+      "Epoch 244/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1039 - accuracy: 0.9692 - val_loss: 3.4383 - val_accuracy: 0.8182\n",
+      "Epoch 245/500\n",
+      "3/3 [==============================] - 0s 14ms/step - loss: 0.1111 - accuracy: 0.9643 - val_loss: 3.4672 - val_accuracy: 0.8200\n",
+      "Epoch 246/500\n",
+      "3/3 [==============================] - 0s 23ms/step - loss: 0.1123 - accuracy: 0.9603 - val_loss: 3.3799 - val_accuracy: 0.8146\n",
+      "Epoch 247/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1252 - accuracy: 0.9625 - val_loss: 3.4479 - val_accuracy: 0.7986\n",
+      "Epoch 248/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1206 - accuracy: 0.9589 - val_loss: 3.3533 - val_accuracy: 0.8182\n",
+      "Epoch 249/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1451 - accuracy: 0.9473 - val_loss: 3.2581 - val_accuracy: 0.8004\n",
+      "Epoch 250/500\n",
+      "3/3 [==============================] - 0s 14ms/step - loss: 0.1213 - accuracy: 0.9603 - val_loss: 3.3730 - val_accuracy: 0.7879\n",
+      "Epoch 251/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1327 - accuracy: 0.9549 - val_loss: 3.3880 - val_accuracy: 0.8128\n",
+      "Epoch 252/500\n",
+      "3/3 [==============================] - 0s 14ms/step - loss: 0.1264 - accuracy: 0.9603 - val_loss: 3.4151 - val_accuracy: 0.8128\n",
+      "Epoch 253/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1157 - accuracy: 0.9612 - val_loss: 3.3689 - val_accuracy: 0.8253\n",
+      "Epoch 254/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1361 - accuracy: 0.9567 - val_loss: 3.3656 - val_accuracy: 0.8039\n",
+      "Epoch 255/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1230 - accuracy: 0.9616 - val_loss: 3.3204 - val_accuracy: 0.8146\n",
+      "Epoch 256/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.1199 - accuracy: 0.9661 - val_loss: 3.4041 - val_accuracy: 0.8307\n",
+      "Epoch 257/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1016 - accuracy: 0.9670 - val_loss: 3.5122 - val_accuracy: 0.8164\n",
+      "Epoch 258/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1246 - accuracy: 0.9607 - val_loss: 3.4578 - val_accuracy: 0.8111\n",
+      "Epoch 259/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1082 - accuracy: 0.9643 - val_loss: 3.5107 - val_accuracy: 0.8057\n",
+      "Epoch 260/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1053 - accuracy: 0.9661 - val_loss: 3.5691 - val_accuracy: 0.8217\n",
+      "Epoch 261/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1192 - accuracy: 0.9580 - val_loss: 3.5103 - val_accuracy: 0.8200\n",
+      "Epoch 262/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1145 - accuracy: 0.9612 - val_loss: 3.3533 - val_accuracy: 0.8111\n",
+      "Epoch 263/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1263 - accuracy: 0.9576 - val_loss: 3.4351 - val_accuracy: 0.8075\n",
+      "Epoch 264/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1189 - accuracy: 0.9629 - val_loss: 3.5318 - val_accuracy: 0.8307\n",
+      "Epoch 265/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1115 - accuracy: 0.9625 - val_loss: 3.6668 - val_accuracy: 0.8057\n",
+      "Epoch 266/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1368 - accuracy: 0.9504 - val_loss: 3.4787 - val_accuracy: 0.8164\n",
+      "Epoch 267/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1064 - accuracy: 0.9621 - val_loss: 3.4085 - val_accuracy: 0.8235\n",
+      "Epoch 268/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0973 - accuracy: 0.9701 - val_loss: 3.3725 - val_accuracy: 0.8253\n",
+      "Epoch 269/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.0958 - accuracy: 0.9661 - val_loss: 3.4961 - val_accuracy: 0.8182\n",
+      "Epoch 270/500\n",
+      "3/3 [==============================] - 0s 28ms/step - loss: 0.1064 - accuracy: 0.9661 - val_loss: 3.6018 - val_accuracy: 0.8289\n",
+      "Epoch 271/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1169 - accuracy: 0.9585 - val_loss: 3.3914 - val_accuracy: 0.8289\n",
+      "Epoch 272/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0949 - accuracy: 0.9701 - val_loss: 3.2555 - val_accuracy: 0.8271\n",
+      "Epoch 273/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1437 - accuracy: 0.9482 - val_loss: 3.5002 - val_accuracy: 0.8217\n",
+      "Epoch 274/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1182 - accuracy: 0.9621 - val_loss: 3.5930 - val_accuracy: 0.8271\n",
+      "Epoch 275/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1010 - accuracy: 0.9656 - val_loss: 3.4905 - val_accuracy: 0.8217\n",
+      "Epoch 276/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0942 - accuracy: 0.9696 - val_loss: 3.4673 - val_accuracy: 0.8200\n",
+      "Epoch 277/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1035 - accuracy: 0.9679 - val_loss: 3.3489 - val_accuracy: 0.8271\n",
+      "Epoch 278/500\n",
+      "3/3 [==============================] - 0s 21ms/step - loss: 0.0932 - accuracy: 0.9656 - val_loss: 3.4957 - val_accuracy: 0.8164\n",
+      "Epoch 279/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0968 - accuracy: 0.9656 - val_loss: 3.5927 - val_accuracy: 0.8217\n",
+      "Epoch 280/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.0956 - accuracy: 0.9688 - val_loss: 3.5349 - val_accuracy: 0.8164\n",
+      "Epoch 281/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0940 - accuracy: 0.9674 - val_loss: 3.4397 - val_accuracy: 0.8217\n",
+      "Epoch 282/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0933 - accuracy: 0.9674 - val_loss: 3.5364 - val_accuracy: 0.8182\n",
+      "Epoch 283/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1056 - accuracy: 0.9625 - val_loss: 3.5316 - val_accuracy: 0.8324\n",
+      "Epoch 284/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0942 - accuracy: 0.9692 - val_loss: 3.3578 - val_accuracy: 0.8307\n",
+      "Epoch 285/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.0980 - accuracy: 0.9679 - val_loss: 3.4109 - val_accuracy: 0.8182\n",
+      "Epoch 286/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0963 - accuracy: 0.9683 - val_loss: 3.7121 - val_accuracy: 0.8182\n",
+      "Epoch 287/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0947 - accuracy: 0.9674 - val_loss: 3.8286 - val_accuracy: 0.8182\n",
+      "Epoch 288/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0954 - accuracy: 0.9705 - val_loss: 3.6221 - val_accuracy: 0.8289\n",
+      "Epoch 289/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.0953 - accuracy: 0.9701 - val_loss: 3.5977 - val_accuracy: 0.8146\n",
+      "Epoch 290/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0857 - accuracy: 0.9723 - val_loss: 3.7337 - val_accuracy: 0.8324\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 291/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1078 - accuracy: 0.9607 - val_loss: 3.7470 - val_accuracy: 0.8360\n",
+      "Epoch 292/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0792 - accuracy: 0.9759 - val_loss: 3.6461 - val_accuracy: 0.8146\n",
+      "Epoch 293/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1050 - accuracy: 0.9629 - val_loss: 3.6083 - val_accuracy: 0.8217\n",
+      "Epoch 294/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0996 - accuracy: 0.9696 - val_loss: 3.6849 - val_accuracy: 0.8289\n",
+      "Epoch 295/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1101 - accuracy: 0.9621 - val_loss: 3.7585 - val_accuracy: 0.8200\n",
+      "Epoch 296/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0865 - accuracy: 0.9719 - val_loss: 3.7206 - val_accuracy: 0.8111\n",
+      "Epoch 297/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.0894 - accuracy: 0.9728 - val_loss: 3.6203 - val_accuracy: 0.8307\n",
+      "Epoch 298/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1039 - accuracy: 0.9647 - val_loss: 3.7966 - val_accuracy: 0.8200\n",
+      "Epoch 299/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0732 - accuracy: 0.9777 - val_loss: 3.8585 - val_accuracy: 0.8021\n",
+      "Epoch 300/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0982 - accuracy: 0.9643 - val_loss: 3.8914 - val_accuracy: 0.8021\n",
+      "Epoch 301/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1021 - accuracy: 0.9683 - val_loss: 3.5062 - val_accuracy: 0.8271\n",
+      "Epoch 302/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1023 - accuracy: 0.9634 - val_loss: 3.3687 - val_accuracy: 0.8378\n",
+      "Epoch 303/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.0789 - accuracy: 0.9741 - val_loss: 3.7674 - val_accuracy: 0.8200\n",
+      "Epoch 304/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0976 - accuracy: 0.9696 - val_loss: 4.0810 - val_accuracy: 0.8200\n",
+      "Epoch 305/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1075 - accuracy: 0.9652 - val_loss: 3.6278 - val_accuracy: 0.8271\n",
+      "Epoch 306/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0750 - accuracy: 0.9754 - val_loss: 3.4697 - val_accuracy: 0.8057\n",
+      "Epoch 307/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1064 - accuracy: 0.9629 - val_loss: 3.8019 - val_accuracy: 0.8217\n",
+      "Epoch 308/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.0853 - accuracy: 0.9719 - val_loss: 4.0418 - val_accuracy: 0.8164\n",
+      "Epoch 309/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1105 - accuracy: 0.9616 - val_loss: 3.6298 - val_accuracy: 0.8182\n",
+      "Epoch 310/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0952 - accuracy: 0.9679 - val_loss: 3.6392 - val_accuracy: 0.8200\n",
+      "Epoch 311/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0890 - accuracy: 0.9688 - val_loss: 4.0134 - val_accuracy: 0.8200\n",
+      "Epoch 312/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1008 - accuracy: 0.9634 - val_loss: 3.8818 - val_accuracy: 0.8271\n",
+      "Epoch 313/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.0797 - accuracy: 0.9750 - val_loss: 3.4721 - val_accuracy: 0.8093\n",
+      "Epoch 314/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0946 - accuracy: 0.9701 - val_loss: 3.5349 - val_accuracy: 0.8324\n",
+      "Epoch 315/500\n",
+      "3/3 [==============================] - 0s 20ms/step - loss: 0.0999 - accuracy: 0.9665 - val_loss: 3.8269 - val_accuracy: 0.8235\n",
+      "Epoch 316/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1138 - accuracy: 0.9652 - val_loss: 3.7666 - val_accuracy: 0.8396\n",
+      "Epoch 317/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0908 - accuracy: 0.9714 - val_loss: 3.4518 - val_accuracy: 0.8182\n",
+      "Epoch 318/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1043 - accuracy: 0.9621 - val_loss: 3.5901 - val_accuracy: 0.8057\n",
+      "Epoch 319/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0960 - accuracy: 0.9732 - val_loss: 4.0491 - val_accuracy: 0.7914\n",
+      "Epoch 320/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.0802 - accuracy: 0.9737 - val_loss: 3.9744 - val_accuracy: 0.8253\n",
+      "Epoch 321/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0844 - accuracy: 0.9688 - val_loss: 3.6495 - val_accuracy: 0.8217\n",
+      "Epoch 322/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0974 - accuracy: 0.9683 - val_loss: 3.4948 - val_accuracy: 0.8289\n",
+      "Epoch 323/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0885 - accuracy: 0.9674 - val_loss: 3.6379 - val_accuracy: 0.8253\n",
+      "Epoch 324/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0736 - accuracy: 0.9750 - val_loss: 3.9118 - val_accuracy: 0.8271\n",
+      "Epoch 325/500\n",
+      "3/3 [==============================] - 0s 87ms/step - loss: 0.0846 - accuracy: 0.9741 - val_loss: 3.9422 - val_accuracy: 0.8200\n",
+      "Epoch 326/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.0823 - accuracy: 0.9754 - val_loss: 3.9003 - val_accuracy: 0.8253\n",
+      "Epoch 327/500\n",
+      "3/3 [==============================] - 0s 75ms/step - loss: 0.0903 - accuracy: 0.9714 - val_loss: 3.7012 - val_accuracy: 0.8271\n",
+      "Epoch 328/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0849 - accuracy: 0.9696 - val_loss: 3.6057 - val_accuracy: 0.8360\n",
+      "Epoch 329/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0776 - accuracy: 0.9750 - val_loss: 3.6857 - val_accuracy: 0.8271\n",
+      "Epoch 330/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0821 - accuracy: 0.9759 - val_loss: 3.8836 - val_accuracy: 0.8111\n",
+      "Epoch 331/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0797 - accuracy: 0.9723 - val_loss: 3.8368 - val_accuracy: 0.8146\n",
+      "Epoch 332/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0782 - accuracy: 0.9705 - val_loss: 3.7394 - val_accuracy: 0.8235\n",
+      "Epoch 333/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0820 - accuracy: 0.9719 - val_loss: 3.7676 - val_accuracy: 0.8324\n",
+      "Epoch 334/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0704 - accuracy: 0.9763 - val_loss: 3.8736 - val_accuracy: 0.8324\n",
+      "Epoch 335/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0966 - accuracy: 0.9705 - val_loss: 3.7719 - val_accuracy: 0.8235\n",
+      "Epoch 336/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.0777 - accuracy: 0.9746 - val_loss: 3.7411 - val_accuracy: 0.8289\n",
+      "Epoch 337/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0705 - accuracy: 0.9795 - val_loss: 3.9666 - val_accuracy: 0.8075\n",
+      "Epoch 338/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0806 - accuracy: 0.9737 - val_loss: 3.9606 - val_accuracy: 0.8253\n",
+      "Epoch 339/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0772 - accuracy: 0.9741 - val_loss: 3.6934 - val_accuracy: 0.8307\n",
+      "Epoch 340/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0885 - accuracy: 0.9692 - val_loss: 3.6097 - val_accuracy: 0.8182\n",
+      "Epoch 341/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.0931 - accuracy: 0.9701 - val_loss: 3.8871 - val_accuracy: 0.8182\n",
+      "Epoch 342/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.0978 - accuracy: 0.9674 - val_loss: 3.9140 - val_accuracy: 0.8128\n",
+      "Epoch 343/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0777 - accuracy: 0.9763 - val_loss: 3.7197 - val_accuracy: 0.8164\n",
+      "Epoch 344/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0955 - accuracy: 0.9701 - val_loss: 3.8124 - val_accuracy: 0.8111\n",
+      "Epoch 345/500\n",
+      "3/3 [==============================] - 0s 19ms/step - loss: 0.0893 - accuracy: 0.9741 - val_loss: 3.7833 - val_accuracy: 0.8200\n",
+      "Epoch 346/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0890 - accuracy: 0.9737 - val_loss: 3.5796 - val_accuracy: 0.8200\n",
+      "Epoch 347/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0732 - accuracy: 0.9728 - val_loss: 3.8555 - val_accuracy: 0.7968\n",
+      "Epoch 348/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0885 - accuracy: 0.9710 - val_loss: 4.0817 - val_accuracy: 0.8039\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 349/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0973 - accuracy: 0.9696 - val_loss: 3.8088 - val_accuracy: 0.8111\n",
+      "Epoch 350/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1083 - accuracy: 0.9643 - val_loss: 3.6089 - val_accuracy: 0.8182\n",
+      "Epoch 351/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0898 - accuracy: 0.9741 - val_loss: 3.7778 - val_accuracy: 0.8235\n",
+      "Epoch 352/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0803 - accuracy: 0.9732 - val_loss: 4.0751 - val_accuracy: 0.8235\n",
+      "Epoch 353/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.0861 - accuracy: 0.9701 - val_loss: 4.0391 - val_accuracy: 0.8164\n",
+      "Epoch 354/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1004 - accuracy: 0.9705 - val_loss: 3.7999 - val_accuracy: 0.8271\n",
+      "Epoch 355/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0769 - accuracy: 0.9768 - val_loss: 3.6874 - val_accuracy: 0.8307\n",
+      "Epoch 356/500\n",
+      "3/3 [==============================] - 0s 14ms/step - loss: 0.0672 - accuracy: 0.9781 - val_loss: 3.8951 - val_accuracy: 0.8057\n",
+      "Epoch 357/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0781 - accuracy: 0.9723 - val_loss: 3.9144 - val_accuracy: 0.8217\n",
+      "Epoch 358/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.0698 - accuracy: 0.9772 - val_loss: 3.8349 - val_accuracy: 0.8289\n",
+      "Epoch 359/500\n",
+      "3/3 [==============================] - 0s 137ms/step - loss: 0.0951 - accuracy: 0.9683 - val_loss: 3.7267 - val_accuracy: 0.8360\n",
+      "Epoch 360/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0814 - accuracy: 0.9750 - val_loss: 3.8657 - val_accuracy: 0.8324\n",
+      "Epoch 361/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0815 - accuracy: 0.9746 - val_loss: 3.8721 - val_accuracy: 0.8360\n",
+      "Epoch 362/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0665 - accuracy: 0.9795 - val_loss: 3.6426 - val_accuracy: 0.8324\n",
+      "Epoch 363/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0896 - accuracy: 0.9728 - val_loss: 3.6636 - val_accuracy: 0.8217\n",
+      "Epoch 364/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0832 - accuracy: 0.9710 - val_loss: 3.9456 - val_accuracy: 0.8200\n",
+      "Epoch 365/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.0644 - accuracy: 0.9790 - val_loss: 3.9795 - val_accuracy: 0.8253\n",
+      "Epoch 366/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0762 - accuracy: 0.9750 - val_loss: 3.6663 - val_accuracy: 0.8253\n",
+      "Epoch 367/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1007 - accuracy: 0.9670 - val_loss: 3.4908 - val_accuracy: 0.8146\n",
+      "Epoch 368/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0871 - accuracy: 0.9701 - val_loss: 3.8275 - val_accuracy: 0.8396\n",
+      "Epoch 369/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.1149 - accuracy: 0.9603 - val_loss: 4.1402 - val_accuracy: 0.8235\n",
+      "Epoch 370/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1132 - accuracy: 0.9634 - val_loss: 3.8217 - val_accuracy: 0.8164\n",
+      "Epoch 371/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1420 - accuracy: 0.9531 - val_loss: 3.5258 - val_accuracy: 0.8342\n",
+      "Epoch 372/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1169 - accuracy: 0.9589 - val_loss: 3.8528 - val_accuracy: 0.8200\n",
+      "Epoch 373/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0806 - accuracy: 0.9741 - val_loss: 4.0672 - val_accuracy: 0.7950\n",
+      "Epoch 374/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1207 - accuracy: 0.9616 - val_loss: 3.8518 - val_accuracy: 0.8217\n",
+      "Epoch 375/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0956 - accuracy: 0.9701 - val_loss: 3.7917 - val_accuracy: 0.8217\n",
+      "Epoch 376/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1108 - accuracy: 0.9607 - val_loss: 3.6754 - val_accuracy: 0.8217\n",
+      "Epoch 377/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0945 - accuracy: 0.9737 - val_loss: 3.5741 - val_accuracy: 0.8111\n",
+      "Epoch 378/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1062 - accuracy: 0.9665 - val_loss: 3.4700 - val_accuracy: 0.8182\n",
+      "Epoch 379/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1233 - accuracy: 0.9652 - val_loss: 3.6749 - val_accuracy: 0.8182\n",
+      "Epoch 380/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1088 - accuracy: 0.9625 - val_loss: 3.6311 - val_accuracy: 0.8146\n",
+      "Epoch 381/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1029 - accuracy: 0.9701 - val_loss: 3.5667 - val_accuracy: 0.8235\n",
+      "Epoch 382/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1023 - accuracy: 0.9647 - val_loss: 3.6927 - val_accuracy: 0.8253\n",
+      "Epoch 383/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0863 - accuracy: 0.9719 - val_loss: 3.8814 - val_accuracy: 0.7897\n",
+      "Epoch 384/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1138 - accuracy: 0.9625 - val_loss: 3.9850 - val_accuracy: 0.8253\n",
+      "Epoch 385/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1036 - accuracy: 0.9643 - val_loss: 3.4939 - val_accuracy: 0.8324\n",
+      "Epoch 386/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.0886 - accuracy: 0.9705 - val_loss: 3.4939 - val_accuracy: 0.8093\n",
+      "Epoch 387/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0799 - accuracy: 0.9728 - val_loss: 3.8934 - val_accuracy: 0.8093\n",
+      "Epoch 388/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1022 - accuracy: 0.9692 - val_loss: 4.1007 - val_accuracy: 0.8289\n",
+      "Epoch 389/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0952 - accuracy: 0.9705 - val_loss: 3.8190 - val_accuracy: 0.8164\n",
+      "Epoch 390/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1045 - accuracy: 0.9683 - val_loss: 3.3549 - val_accuracy: 0.8111\n",
+      "Epoch 391/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0924 - accuracy: 0.9692 - val_loss: 3.5710 - val_accuracy: 0.8200\n",
+      "Epoch 392/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0833 - accuracy: 0.9719 - val_loss: 4.0184 - val_accuracy: 0.8253\n",
+      "Epoch 393/500\n",
+      "3/3 [==============================] - 0s 19ms/step - loss: 0.0741 - accuracy: 0.9768 - val_loss: 4.3594 - val_accuracy: 0.8164\n",
+      "Epoch 394/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0795 - accuracy: 0.9746 - val_loss: 4.1295 - val_accuracy: 0.8324\n",
+      "Epoch 395/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0872 - accuracy: 0.9714 - val_loss: 3.7597 - val_accuracy: 0.8200\n",
+      "Epoch 396/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0775 - accuracy: 0.9732 - val_loss: 3.5452 - val_accuracy: 0.8289\n",
+      "Epoch 397/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0754 - accuracy: 0.9750 - val_loss: 3.8139 - val_accuracy: 0.8039\n",
+      "Epoch 398/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0780 - accuracy: 0.9750 - val_loss: 4.0652 - val_accuracy: 0.8164\n",
+      "Epoch 399/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0905 - accuracy: 0.9670 - val_loss: 4.1023 - val_accuracy: 0.8360\n",
+      "Epoch 400/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0690 - accuracy: 0.9754 - val_loss: 3.9572 - val_accuracy: 0.8378\n",
+      "Epoch 401/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0875 - accuracy: 0.9692 - val_loss: 3.8096 - val_accuracy: 0.8324\n",
+      "Epoch 402/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0686 - accuracy: 0.9741 - val_loss: 3.7491 - val_accuracy: 0.8235\n",
+      "Epoch 403/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0632 - accuracy: 0.9799 - val_loss: 4.0235 - val_accuracy: 0.8324\n",
+      "Epoch 404/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0895 - accuracy: 0.9728 - val_loss: 4.2009 - val_accuracy: 0.8217\n",
+      "Epoch 405/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0790 - accuracy: 0.9737 - val_loss: 4.1241 - val_accuracy: 0.8182\n",
+      "Epoch 406/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0991 - accuracy: 0.9643 - val_loss: 3.7753 - val_accuracy: 0.8217\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 407/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0885 - accuracy: 0.9728 - val_loss: 3.9439 - val_accuracy: 0.8093\n",
+      "Epoch 408/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0911 - accuracy: 0.9692 - val_loss: 3.9549 - val_accuracy: 0.8057\n",
+      "Epoch 409/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.0858 - accuracy: 0.9714 - val_loss: 3.9672 - val_accuracy: 0.8093\n",
+      "Epoch 410/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0927 - accuracy: 0.9683 - val_loss: 4.0103 - val_accuracy: 0.8146\n",
+      "Epoch 411/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1115 - accuracy: 0.9558 - val_loss: 3.8561 - val_accuracy: 0.8128\n",
+      "Epoch 412/500\n",
+      "3/3 [==============================] - 0s 20ms/step - loss: 0.0982 - accuracy: 0.9705 - val_loss: 3.9945 - val_accuracy: 0.7932\n",
+      "Epoch 413/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0986 - accuracy: 0.9643 - val_loss: 3.9321 - val_accuracy: 0.7968\n",
+      "Epoch 414/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1110 - accuracy: 0.9607 - val_loss: 4.0284 - val_accuracy: 0.7897\n",
+      "Epoch 415/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1102 - accuracy: 0.9625 - val_loss: 4.0008 - val_accuracy: 0.8057\n",
+      "Epoch 416/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1138 - accuracy: 0.9612 - val_loss: 4.1750 - val_accuracy: 0.8200\n",
+      "Epoch 417/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0966 - accuracy: 0.9679 - val_loss: 3.9949 - val_accuracy: 0.8182\n",
+      "Epoch 418/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0974 - accuracy: 0.9683 - val_loss: 3.8694 - val_accuracy: 0.8307\n",
+      "Epoch 419/500\n",
+      "3/3 [==============================] - 0s 93ms/step - loss: 0.0987 - accuracy: 0.9683 - val_loss: 4.1865 - val_accuracy: 0.8200\n",
+      "Epoch 420/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.0982 - accuracy: 0.9661 - val_loss: 4.2851 - val_accuracy: 0.7986\n",
+      "Epoch 421/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0920 - accuracy: 0.9674 - val_loss: 3.8369 - val_accuracy: 0.8182\n",
+      "Epoch 422/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0973 - accuracy: 0.9679 - val_loss: 4.0347 - val_accuracy: 0.8146\n",
+      "Epoch 423/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1011 - accuracy: 0.9683 - val_loss: 4.1624 - val_accuracy: 0.8004\n",
+      "Epoch 424/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0826 - accuracy: 0.9750 - val_loss: 4.2419 - val_accuracy: 0.8021\n",
+      "Epoch 425/500\n",
+      "3/3 [==============================] - 1s 326ms/step - loss: 0.0687 - accuracy: 0.9754 - val_loss: 4.0753 - val_accuracy: 0.8182\n",
+      "Epoch 426/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.0740 - accuracy: 0.9737 - val_loss: 4.2507 - val_accuracy: 0.8075\n",
+      "Epoch 427/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0879 - accuracy: 0.9701 - val_loss: 3.8113 - val_accuracy: 0.8235\n",
+      "Epoch 428/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0894 - accuracy: 0.9750 - val_loss: 3.6997 - val_accuracy: 0.8324\n",
+      "Epoch 429/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0911 - accuracy: 0.9723 - val_loss: 3.8370 - val_accuracy: 0.8271\n",
+      "Epoch 430/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0688 - accuracy: 0.9799 - val_loss: 4.0840 - val_accuracy: 0.8075\n",
+      "Epoch 431/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1020 - accuracy: 0.9683 - val_loss: 4.0864 - val_accuracy: 0.7914\n",
+      "Epoch 432/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.1059 - accuracy: 0.9625 - val_loss: 3.8069 - val_accuracy: 0.8182\n",
+      "Epoch 433/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0772 - accuracy: 0.9723 - val_loss: 3.9571 - val_accuracy: 0.8057\n",
+      "Epoch 434/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.0948 - accuracy: 0.9674 - val_loss: 4.0445 - val_accuracy: 0.8128\n",
+      "Epoch 435/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0910 - accuracy: 0.9701 - val_loss: 3.6635 - val_accuracy: 0.8360\n",
+      "Epoch 436/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0802 - accuracy: 0.9746 - val_loss: 3.6715 - val_accuracy: 0.8307\n",
+      "Epoch 437/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0883 - accuracy: 0.9723 - val_loss: 3.9912 - val_accuracy: 0.8217\n",
+      "Epoch 438/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.0775 - accuracy: 0.9741 - val_loss: 4.0961 - val_accuracy: 0.8146\n",
+      "Epoch 439/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0724 - accuracy: 0.9732 - val_loss: 3.9445 - val_accuracy: 0.8378\n",
+      "Epoch 440/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0623 - accuracy: 0.9812 - val_loss: 3.8161 - val_accuracy: 0.8271\n",
+      "Epoch 441/500\n",
+      "3/3 [==============================] - 0s 22ms/step - loss: 0.0942 - accuracy: 0.9679 - val_loss: 3.8594 - val_accuracy: 0.8467\n",
+      "Epoch 442/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0631 - accuracy: 0.9790 - val_loss: 4.1612 - val_accuracy: 0.8253\n",
+      "Epoch 443/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1112 - accuracy: 0.9638 - val_loss: 4.1340 - val_accuracy: 0.8182\n",
+      "Epoch 444/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0917 - accuracy: 0.9696 - val_loss: 4.3623 - val_accuracy: 0.7897\n",
+      "Epoch 445/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1528 - accuracy: 0.9540 - val_loss: 3.9424 - val_accuracy: 0.8182\n",
+      "Epoch 446/500\n",
+      "3/3 [==============================] - 0s 18ms/step - loss: 0.1331 - accuracy: 0.9576 - val_loss: 3.9227 - val_accuracy: 0.8253\n",
+      "Epoch 447/500\n",
+      "3/3 [==============================] - 0s 39ms/step - loss: 0.1209 - accuracy: 0.9612 - val_loss: 4.0155 - val_accuracy: 0.8146\n",
+      "Epoch 448/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1003 - accuracy: 0.9661 - val_loss: 3.7497 - val_accuracy: 0.8057\n",
+      "Epoch 449/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1047 - accuracy: 0.9652 - val_loss: 3.6100 - val_accuracy: 0.8217\n",
+      "Epoch 450/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.0999 - accuracy: 0.9679 - val_loss: 3.9842 - val_accuracy: 0.8111\n",
+      "Epoch 451/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1251 - accuracy: 0.9598 - val_loss: 4.0568 - val_accuracy: 0.8378\n",
+      "Epoch 452/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0788 - accuracy: 0.9750 - val_loss: 4.0065 - val_accuracy: 0.8271\n",
+      "Epoch 453/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0880 - accuracy: 0.9714 - val_loss: 3.8871 - val_accuracy: 0.8378\n",
+      "Epoch 454/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1070 - accuracy: 0.9665 - val_loss: 4.0148 - val_accuracy: 0.8342\n",
+      "Epoch 455/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1018 - accuracy: 0.9652 - val_loss: 4.0548 - val_accuracy: 0.8396\n",
+      "Epoch 456/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1049 - accuracy: 0.9625 - val_loss: 4.0096 - val_accuracy: 0.8021\n",
+      "Epoch 457/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1244 - accuracy: 0.9567 - val_loss: 4.1097 - val_accuracy: 0.8182\n",
+      "Epoch 458/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1455 - accuracy: 0.9504 - val_loss: 3.9897 - val_accuracy: 0.8128\n",
+      "Epoch 459/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1432 - accuracy: 0.9509 - val_loss: 3.7023 - val_accuracy: 0.8039\n",
+      "Epoch 460/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1303 - accuracy: 0.9554 - val_loss: 4.0265 - val_accuracy: 0.7807\n",
+      "Epoch 461/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1187 - accuracy: 0.9598 - val_loss: 4.2923 - val_accuracy: 0.8075\n",
+      "Epoch 462/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1034 - accuracy: 0.9665 - val_loss: 3.8971 - val_accuracy: 0.8217\n",
+      "Epoch 463/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1024 - accuracy: 0.9643 - val_loss: 3.8269 - val_accuracy: 0.8182\n",
+      "Epoch 464/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1248 - accuracy: 0.9621 - val_loss: 3.9530 - val_accuracy: 0.8378\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 465/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0939 - accuracy: 0.9705 - val_loss: 3.9372 - val_accuracy: 0.8289\n",
+      "Epoch 466/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1076 - accuracy: 0.9621 - val_loss: 4.1843 - val_accuracy: 0.8253\n",
+      "Epoch 467/500\n",
+      "3/3 [==============================] - 0s 20ms/step - loss: 0.1099 - accuracy: 0.9638 - val_loss: 4.2604 - val_accuracy: 0.8111\n",
+      "Epoch 468/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0842 - accuracy: 0.9723 - val_loss: 3.9724 - val_accuracy: 0.8289\n",
+      "Epoch 469/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.0996 - accuracy: 0.9674 - val_loss: 4.0019 - val_accuracy: 0.8111\n",
+      "Epoch 470/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0935 - accuracy: 0.9670 - val_loss: 4.1580 - val_accuracy: 0.8324\n",
+      "Epoch 471/500\n",
+      "3/3 [==============================] - 0s 14ms/step - loss: 0.0842 - accuracy: 0.9719 - val_loss: 4.1938 - val_accuracy: 0.8253\n",
+      "Epoch 472/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1047 - accuracy: 0.9647 - val_loss: 3.9072 - val_accuracy: 0.8396\n",
+      "Epoch 473/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0910 - accuracy: 0.9679 - val_loss: 3.8262 - val_accuracy: 0.8253\n",
+      "Epoch 474/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1006 - accuracy: 0.9661 - val_loss: 3.8356 - val_accuracy: 0.8307\n",
+      "Epoch 475/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1114 - accuracy: 0.9629 - val_loss: 3.7173 - val_accuracy: 0.8307\n",
+      "Epoch 476/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1075 - accuracy: 0.9629 - val_loss: 3.8374 - val_accuracy: 0.8253\n",
+      "Epoch 477/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1207 - accuracy: 0.9625 - val_loss: 3.9952 - val_accuracy: 0.7986\n",
+      "Epoch 478/500\n",
+      "3/3 [==============================] - 0s 20ms/step - loss: 0.1023 - accuracy: 0.9652 - val_loss: 4.0035 - val_accuracy: 0.8289\n",
+      "Epoch 479/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0924 - accuracy: 0.9656 - val_loss: 4.1198 - val_accuracy: 0.8182\n",
+      "Epoch 480/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1240 - accuracy: 0.9612 - val_loss: 3.9291 - val_accuracy: 0.8235\n",
+      "Epoch 481/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0888 - accuracy: 0.9688 - val_loss: 3.8687 - val_accuracy: 0.8396\n",
+      "Epoch 482/500\n",
+      "3/3 [==============================] - 0s 56ms/step - loss: 0.0990 - accuracy: 0.9647 - val_loss: 4.1139 - val_accuracy: 0.8431\n",
+      "Epoch 483/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1030 - accuracy: 0.9647 - val_loss: 4.2289 - val_accuracy: 0.8289\n",
+      "Epoch 484/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1054 - accuracy: 0.9661 - val_loss: 4.0827 - val_accuracy: 0.8111\n",
+      "Epoch 485/500\n",
+      "3/3 [==============================] - 0s 43ms/step - loss: 0.1109 - accuracy: 0.9625 - val_loss: 3.8768 - val_accuracy: 0.8360\n",
+      "Epoch 486/500\n",
+      "3/3 [==============================] - 0s 61ms/step - loss: 0.1020 - accuracy: 0.9625 - val_loss: 3.8905 - val_accuracy: 0.8324\n",
+      "Epoch 487/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.0892 - accuracy: 0.9714 - val_loss: 4.2800 - val_accuracy: 0.8200\n",
+      "Epoch 488/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0882 - accuracy: 0.9719 - val_loss: 4.1112 - val_accuracy: 0.8217\n",
+      "Epoch 489/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0815 - accuracy: 0.9692 - val_loss: 4.0338 - val_accuracy: 0.8039\n",
+      "Epoch 490/500\n",
+      "3/3 [==============================] - 0s 14ms/step - loss: 0.1132 - accuracy: 0.9589 - val_loss: 3.7588 - val_accuracy: 0.8307\n",
+      "Epoch 491/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1009 - accuracy: 0.9670 - val_loss: 4.0002 - val_accuracy: 0.8057\n",
+      "Epoch 492/500\n",
+      "3/3 [==============================] - 0s 16ms/step - loss: 0.1218 - accuracy: 0.9580 - val_loss: 3.8462 - val_accuracy: 0.8271\n",
+      "Epoch 493/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1019 - accuracy: 0.9647 - val_loss: 4.0607 - val_accuracy: 0.8182\n",
+      "Epoch 494/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1329 - accuracy: 0.9527 - val_loss: 4.3263 - val_accuracy: 0.8128\n",
+      "Epoch 495/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.0988 - accuracy: 0.9683 - val_loss: 4.1268 - val_accuracy: 0.8307\n",
+      "Epoch 496/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.0876 - accuracy: 0.9696 - val_loss: 3.8001 - val_accuracy: 0.8146\n",
+      "Epoch 497/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1131 - accuracy: 0.9629 - val_loss: 3.8902 - val_accuracy: 0.8146\n",
+      "Epoch 498/500\n",
+      "3/3 [==============================] - 0s 14ms/step - loss: 0.1416 - accuracy: 0.9531 - val_loss: 4.2596 - val_accuracy: 0.7986\n",
+      "Epoch 499/500\n",
+      "3/3 [==============================] - 0s 17ms/step - loss: 0.1524 - accuracy: 0.9504 - val_loss: 4.2255 - val_accuracy: 0.7950\n",
+      "Epoch 500/500\n",
+      "3/3 [==============================] - 0s 15ms/step - loss: 0.1492 - accuracy: 0.9487 - val_loss: 3.8500 - val_accuracy: 0.8307\n"
+     ]
+    },
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "/* global mpl */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "mpl.get_websocket_type = function () {\n",
+       "    if (typeof WebSocket !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert(\n",
+       "            'Your browser does not have WebSocket support. ' +\n",
+       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "                'Firefox 4 and 5 are also supported but you ' +\n",
+       "                'have to enable WebSockets in about:config.'\n",
+       "        );\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById('mpl-warnings');\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent =\n",
+       "                'This browser does not support binary websocket messages. ' +\n",
+       "                'Performance may be slow.';\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = document.createElement('div');\n",
+       "    this.root.setAttribute('style', 'display: inline-block');\n",
+       "    this._root_extra_style(this.root);\n",
+       "\n",
+       "    parent_element.appendChild(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen = function () {\n",
+       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
+       "        fig.send_message('send_image_mode', {});\n",
+       "        if (fig.ratio !== 1) {\n",
+       "            fig.send_message('set_device_pixel_ratio', {\n",
+       "                device_pixel_ratio: fig.ratio,\n",
+       "            });\n",
+       "        }\n",
+       "        fig.send_message('refresh', {});\n",
+       "    };\n",
+       "\n",
+       "    this.imageObj.onload = function () {\n",
+       "        if (fig.image_mode === 'full') {\n",
+       "            // Full images could contain transparency (where diff images\n",
+       "            // almost always do), so we need to clear the canvas so that\n",
+       "            // there is no ghosting.\n",
+       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "        }\n",
+       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "    };\n",
+       "\n",
+       "    this.imageObj.onunload = function () {\n",
+       "        fig.ws.close();\n",
+       "    };\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function () {\n",
+       "    var titlebar = document.createElement('div');\n",
+       "    titlebar.classList =\n",
+       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
+       "    var titletext = document.createElement('div');\n",
+       "    titletext.classList = 'ui-dialog-title';\n",
+       "    titletext.setAttribute(\n",
+       "        'style',\n",
+       "        'width: 100%; text-align: center; padding: 3px;'\n",
+       "    );\n",
+       "    titlebar.appendChild(titletext);\n",
+       "    this.root.appendChild(titlebar);\n",
+       "    this.header = titletext;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function () {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
+       "    canvas_div.setAttribute(\n",
+       "        'style',\n",
+       "        'border: 1px solid #ddd;' +\n",
+       "            'box-sizing: content-box;' +\n",
+       "            'clear: both;' +\n",
+       "            'min-height: 1px;' +\n",
+       "            'min-width: 1px;' +\n",
+       "            'outline: 0;' +\n",
+       "            'overflow: hidden;' +\n",
+       "            'position: relative;' +\n",
+       "            'resize: both;'\n",
+       "    );\n",
+       "\n",
+       "    function on_keyboard_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.key_event(event, name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keydown',\n",
+       "        on_keyboard_event_closure('key_press')\n",
+       "    );\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keyup',\n",
+       "        on_keyboard_event_closure('key_release')\n",
+       "    );\n",
+       "\n",
+       "    this._canvas_extra_style(canvas_div);\n",
+       "    this.root.appendChild(canvas_div);\n",
+       "\n",
+       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
+       "    canvas.classList.add('mpl-canvas');\n",
+       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
+       "\n",
+       "    this.context = canvas.getContext('2d');\n",
+       "\n",
+       "    var backingStore =\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        this.context.webkitBackingStorePixelRatio ||\n",
+       "        this.context.mozBackingStorePixelRatio ||\n",
+       "        this.context.msBackingStorePixelRatio ||\n",
+       "        this.context.oBackingStorePixelRatio ||\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        1;\n",
+       "\n",
+       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
+       "        'canvas'\n",
+       "    ));\n",
+       "    rubberband_canvas.setAttribute(\n",
+       "        'style',\n",
+       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
+       "    );\n",
+       "\n",
+       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
+       "    if (this.ResizeObserver === undefined) {\n",
+       "        if (window.ResizeObserver !== undefined) {\n",
+       "            this.ResizeObserver = window.ResizeObserver;\n",
+       "        } else {\n",
+       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
+       "            this.ResizeObserver = obs.ResizeObserver;\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
+       "        var nentries = entries.length;\n",
+       "        for (var i = 0; i < nentries; i++) {\n",
+       "            var entry = entries[i];\n",
+       "            var width, height;\n",
+       "            if (entry.contentBoxSize) {\n",
+       "                if (entry.contentBoxSize instanceof Array) {\n",
+       "                    // Chrome 84 implements new version of spec.\n",
+       "                    width = entry.contentBoxSize[0].inlineSize;\n",
+       "                    height = entry.contentBoxSize[0].blockSize;\n",
+       "                } else {\n",
+       "                    // Firefox implements old version of spec.\n",
+       "                    width = entry.contentBoxSize.inlineSize;\n",
+       "                    height = entry.contentBoxSize.blockSize;\n",
+       "                }\n",
+       "            } else {\n",
+       "                // Chrome <84 implements even older version of spec.\n",
+       "                width = entry.contentRect.width;\n",
+       "                height = entry.contentRect.height;\n",
+       "            }\n",
+       "\n",
+       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
+       "            // the canvas container.\n",
+       "            if (entry.devicePixelContentBoxSize) {\n",
+       "                // Chrome 84 implements new version of spec.\n",
+       "                canvas.setAttribute(\n",
+       "                    'width',\n",
+       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
+       "                );\n",
+       "                canvas.setAttribute(\n",
+       "                    'height',\n",
+       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
+       "                );\n",
+       "            } else {\n",
+       "                canvas.setAttribute('width', width * fig.ratio);\n",
+       "                canvas.setAttribute('height', height * fig.ratio);\n",
+       "            }\n",
+       "            canvas.setAttribute(\n",
+       "                'style',\n",
+       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
+       "            );\n",
+       "\n",
+       "            rubberband_canvas.setAttribute('width', width);\n",
+       "            rubberband_canvas.setAttribute('height', height);\n",
+       "\n",
+       "            // And update the size in Python. We ignore the initial 0/0 size\n",
+       "            // that occurs as the element is placed into the DOM, which should\n",
+       "            // otherwise not happen due to the minimum size styling.\n",
+       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
+       "                fig.request_resize(width, height);\n",
+       "            }\n",
+       "        }\n",
+       "    });\n",
+       "    this.resizeObserverInstance.observe(canvas_div);\n",
+       "\n",
+       "    function on_mouse_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.mouse_event(event, name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousedown',\n",
+       "        on_mouse_event_closure('button_press')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseup',\n",
+       "        on_mouse_event_closure('button_release')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'dblclick',\n",
+       "        on_mouse_event_closure('dblclick')\n",
+       "    );\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousemove',\n",
+       "        on_mouse_event_closure('motion_notify')\n",
+       "    );\n",
+       "\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseenter',\n",
+       "        on_mouse_event_closure('figure_enter')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseleave',\n",
+       "        on_mouse_event_closure('figure_leave')\n",
+       "    );\n",
+       "\n",
+       "    canvas_div.addEventListener('wheel', function (event) {\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        on_mouse_event_closure('scroll')(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.appendChild(canvas);\n",
+       "    canvas_div.appendChild(rubberband_canvas);\n",
+       "\n",
+       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
+       "    this.rubberband_context.strokeStyle = '#000000';\n",
+       "\n",
+       "    this._resize_canvas = function (width, height, forward) {\n",
+       "        if (forward) {\n",
+       "            canvas_div.style.width = width + 'px';\n",
+       "            canvas_div.style.height = height + 'px';\n",
+       "        }\n",
+       "    };\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
+       "        event.preventDefault();\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus() {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'mpl-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
+       "\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'mpl-button-group';\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'mpl-button-group';\n",
+       "            continue;\n",
+       "        }\n",
+       "\n",
+       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
+       "        button.classList = 'mpl-widget';\n",
+       "        button.setAttribute('role', 'button');\n",
+       "        button.setAttribute('aria-disabled', 'false');\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+       "\n",
+       "        var icon_img = document.createElement('img');\n",
+       "        icon_img.src = '_images/' + image + '.png';\n",
+       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
+       "        icon_img.alt = tooltip;\n",
+       "        button.appendChild(icon_img);\n",
+       "\n",
+       "        buttonGroup.appendChild(button);\n",
+       "    }\n",
+       "\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker = document.createElement('select');\n",
+       "    fmt_picker.classList = 'mpl-widget';\n",
+       "    toolbar.appendChild(fmt_picker);\n",
+       "    this.format_dropdown = fmt_picker;\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = document.createElement('option');\n",
+       "        option.selected = fmt === mpl.default_extension;\n",
+       "        option.innerHTML = fmt;\n",
+       "        fmt_picker.appendChild(option);\n",
+       "    }\n",
+       "\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function (type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function () {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
+       "        fig.send_message('refresh', {});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
+       "    var x0 = msg['x0'] / fig.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
+       "    var x1 = msg['x1'] / fig.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0,\n",
+       "        0,\n",
+       "        fig.canvas.width / fig.ratio,\n",
+       "        fig.canvas.height / fig.ratio\n",
+       "    );\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
+       "    fig.rubberband_canvas.style.cursor = msg['cursor'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
+       "    for (var key in msg) {\n",
+       "        if (!(key in fig.buttons)) {\n",
+       "            continue;\n",
+       "        }\n",
+       "        fig.buttons[key].disabled = !msg[key];\n",
+       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
+       "    if (msg['mode'] === 'PAN') {\n",
+       "        fig.buttons['Pan'].classList.add('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    } else if (msg['mode'] === 'ZOOM') {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.add('active');\n",
+       "    } else {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message('ack', {});\n",
+       "};\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            var img = evt.data;\n",
+       "            if (img.type !== 'image/png') {\n",
+       "                /* FIXME: We get \"Resource interpreted as Image but\n",
+       "                 * transferred with MIME type text/plain:\" errors on\n",
+       "                 * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "                 * to be part of the websocket stream */\n",
+       "                img.type = 'image/png';\n",
+       "            }\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src\n",
+       "                );\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                img\n",
+       "            );\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        } else if (\n",
+       "            typeof evt.data === 'string' &&\n",
+       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
+       "        ) {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig['handle_' + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\n",
+       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
+       "                msg\n",
+       "            );\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\n",
+       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
+       "                    e,\n",
+       "                    e.stack,\n",
+       "                    msg\n",
+       "                );\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "};\n",
+       "\n",
+       "// from https://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function (e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e) {\n",
+       "        e = window.event;\n",
+       "    }\n",
+       "    if (e.target) {\n",
+       "        targ = e.target;\n",
+       "    } else if (e.srcElement) {\n",
+       "        targ = e.srcElement;\n",
+       "    }\n",
+       "    if (targ.nodeType === 3) {\n",
+       "        // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "    }\n",
+       "\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    var boundingRect = targ.getBoundingClientRect();\n",
+       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
+       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
+       "\n",
+       "    return { x: x, y: y };\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * https://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys(original) {\n",
+       "    return Object.keys(original).reduce(function (obj, key) {\n",
+       "        if (typeof original[key] !== 'object') {\n",
+       "            obj[key] = original[key];\n",
+       "        }\n",
+       "        return obj;\n",
+       "    }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event);\n",
+       "\n",
+       "    if (name === 'button_press') {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * this.ratio;\n",
+       "    var y = canvas_pos.y * this.ratio;\n",
+       "\n",
+       "    this.send_message(name, {\n",
+       "        x: x,\n",
+       "        y: y,\n",
+       "        button: event.button,\n",
+       "        step: event.step,\n",
+       "        guiEvent: simpleKeys(event),\n",
+       "    });\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function (event, name) {\n",
+       "    // Prevent repeat events\n",
+       "    if (name === 'key_press') {\n",
+       "        if (event.key === this._key) {\n",
+       "            return;\n",
+       "        } else {\n",
+       "            this._key = event.key;\n",
+       "        }\n",
+       "    }\n",
+       "    if (name === 'key_release') {\n",
+       "        this._key = null;\n",
+       "    }\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.key !== 'Control') {\n",
+       "        value += 'ctrl+';\n",
+       "    }\n",
+       "    else if (event.altKey && event.key !== 'Alt') {\n",
+       "        value += 'alt+';\n",
+       "    }\n",
+       "    else if (event.shiftKey && event.key !== 'Shift') {\n",
+       "        value += 'shift+';\n",
+       "    }\n",
+       "\n",
+       "    value += 'k' + event.key;\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
+       "    return false;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
+       "    if (name === 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message('toolbar_button', { name: name });\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "\n",
+       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
+       "// prettier-ignore\n",
+       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";/* global mpl */\n",
+       "\n",
+       "var comm_websocket_adapter = function (comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.binaryType = comm.kernel.ws.binaryType;\n",
+       "    ws.readyState = comm.kernel.ws.readyState;\n",
+       "    function updateReadyState(_event) {\n",
+       "        if (comm.kernel.ws) {\n",
+       "            ws.readyState = comm.kernel.ws.readyState;\n",
+       "        } else {\n",
+       "            ws.readyState = 3; // Closed state.\n",
+       "        }\n",
+       "    }\n",
+       "    comm.kernel.ws.addEventListener('open', updateReadyState);\n",
+       "    comm.kernel.ws.addEventListener('close', updateReadyState);\n",
+       "    comm.kernel.ws.addEventListener('error', updateReadyState);\n",
+       "\n",
+       "    ws.close = function () {\n",
+       "        comm.close();\n",
+       "    };\n",
+       "    ws.send = function (m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function (msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        var data = msg['content']['data'];\n",
+       "        if (data['blob'] !== undefined) {\n",
+       "            data = {\n",
+       "                data: new Blob(msg['buffers'], { type: data['blob'] }),\n",
+       "            };\n",
+       "        }\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(data);\n",
+       "    });\n",
+       "    return ws;\n",
+       "};\n",
+       "\n",
+       "mpl.mpl_figure_comm = function (comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = document.getElementById(id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm);\n",
+       "\n",
+       "    function ondownload(figure, _format) {\n",
+       "        window.open(figure.canvas.toDataURL());\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element;\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error('Failed to find cell for figure', id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "    fig.cell_info[0].output_area.element.on(\n",
+       "        'cleared',\n",
+       "        { fig: fig },\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
+       "    var width = fig.canvas.width / fig.ratio;\n",
+       "    fig.cell_info[0].output_area.element.off(\n",
+       "        'cleared',\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
+       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable();\n",
+       "    fig.parent_element.innerHTML =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "    fig.close_ws(fig, msg);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width / this.ratio;\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message('ack', {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () {\n",
+       "        fig.push_to_output();\n",
+       "    }, 1000);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'btn-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
+       "\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'btn-group';\n",
+       "    var button;\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'btn-group';\n",
+       "            continue;\n",
+       "        }\n",
+       "\n",
+       "        button = fig.buttons[name] = document.createElement('button');\n",
+       "        button.classList = 'btn btn-default';\n",
+       "        button.href = '#';\n",
+       "        button.title = name;\n",
+       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+       "        buttonGroup.appendChild(button);\n",
+       "    }\n",
+       "\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message pull-right';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = document.createElement('div');\n",
+       "    buttongrp.classList = 'btn-group inline pull-right';\n",
+       "    button = document.createElement('button');\n",
+       "    button.classList = 'btn btn-mini btn-primary';\n",
+       "    button.href = '#';\n",
+       "    button.title = 'Stop Interaction';\n",
+       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
+       "    button.addEventListener('click', function (_evt) {\n",
+       "        fig.handle_close(fig, {});\n",
+       "    });\n",
+       "    button.addEventListener(\n",
+       "        'mouseover',\n",
+       "        on_mouseover_closure('Stop Interaction')\n",
+       "    );\n",
+       "    buttongrp.appendChild(button);\n",
+       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
+       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
+       "    var fig = event.data.fig;\n",
+       "    if (event.target !== this) {\n",
+       "        // Ignore bubbled events from children.\n",
+       "        return;\n",
+       "    }\n",
+       "    fig.close_ws(fig, {});\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function (el) {\n",
+       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.setAttribute('tabindex', 0);\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    } else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which === 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "};\n",
+       "\n",
+       "mpl.find_output_cell = function (html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i = 0; i < ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code') {\n",
+       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] === html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel !== null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target(\n",
+       "        'matplotlib',\n",
+       "        mpl.mpl_figure_comm\n",
+       "    );\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"640\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "learning_rate = 0.01\n",
+    "epochs = 500\n",
+    "batch_size = 1000\n",
+    "validation_split = 0.2\n",
+    "\n",
+    "# Establish the model's topography.\n",
+    "my_model = create_model(learning_rate)\n",
+    "# Train the model on the normalized training set.\n",
+    "epochs, hist = train_model(my_model, train_df, np.array(mydata_lable), \n",
+    "                           epochs, batch_size, validation_split)\n",
+    "\n",
+    "# Plot a graph of the metric vs. epochs.\n",
+    "list_of_metrics_to_plot = ['accuracy', 'val_accuracy']\n",
+    "plot_curve(epochs, hist, list_of_metrics_to_plot)\n",
+    "\n",
+    "\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 67,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>loss</th>\n",
+       "      <th>accuracy</th>\n",
+       "      <th>val_loss</th>\n",
+       "      <th>val_accuracy</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>11.004742</td>\n",
+       "      <td>0.079911</td>\n",
+       "      <td>11.425354</td>\n",
+       "      <td>0.149733</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>6.618367</td>\n",
+       "      <td>0.195982</td>\n",
+       "      <td>5.508847</td>\n",
+       "      <td>0.199643</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>3.557698</td>\n",
+       "      <td>0.344643</td>\n",
+       "      <td>3.907562</td>\n",
+       "      <td>0.176471</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>2.740256</td>\n",
+       "      <td>0.362946</td>\n",
+       "      <td>3.747744</td>\n",
+       "      <td>0.258467</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>2.119701</td>\n",
+       "      <td>0.490625</td>\n",
+       "      <td>3.717331</td>\n",
+       "      <td>0.279857</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>1.627006</td>\n",
+       "      <td>0.599554</td>\n",
+       "      <td>3.453233</td>\n",
+       "      <td>0.376114</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>1.215506</td>\n",
+       "      <td>0.697768</td>\n",
+       "      <td>3.377179</td>\n",
+       "      <td>0.393939</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>0.882748</td>\n",
+       "      <td>0.788393</td>\n",
+       "      <td>3.353643</td>\n",
+       "      <td>0.506239</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>0.671532</td>\n",
+       "      <td>0.845982</td>\n",
+       "      <td>3.494065</td>\n",
+       "      <td>0.543672</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>0.502864</td>\n",
+       "      <td>0.880357</td>\n",
+       "      <td>3.594764</td>\n",
+       "      <td>0.586453</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>0.423036</td>\n",
+       "      <td>0.887500</td>\n",
+       "      <td>3.665407</td>\n",
+       "      <td>0.645276</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>0.332413</td>\n",
+       "      <td>0.913839</td>\n",
+       "      <td>3.578811</td>\n",
+       "      <td>0.672014</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>12</th>\n",
+       "      <td>0.282103</td>\n",
+       "      <td>0.928571</td>\n",
+       "      <td>3.630975</td>\n",
+       "      <td>0.682709</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>13</th>\n",
+       "      <td>0.244660</td>\n",
+       "      <td>0.930804</td>\n",
+       "      <td>3.658487</td>\n",
+       "      <td>0.700535</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>14</th>\n",
+       "      <td>0.210043</td>\n",
+       "      <td>0.944196</td>\n",
+       "      <td>3.646290</td>\n",
+       "      <td>0.736185</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>15</th>\n",
+       "      <td>0.183707</td>\n",
+       "      <td>0.954018</td>\n",
+       "      <td>3.646698</td>\n",
+       "      <td>0.754011</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>16</th>\n",
+       "      <td>0.157131</td>\n",
+       "      <td>0.960268</td>\n",
+       "      <td>3.742814</td>\n",
+       "      <td>0.773619</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>17</th>\n",
+       "      <td>0.146922</td>\n",
+       "      <td>0.970089</td>\n",
+       "      <td>3.793929</td>\n",
+       "      <td>0.741533</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>18</th>\n",
+       "      <td>0.124116</td>\n",
+       "      <td>0.972321</td>\n",
+       "      <td>3.775696</td>\n",
+       "      <td>0.752228</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>19</th>\n",
+       "      <td>0.120120</td>\n",
+       "      <td>0.970982</td>\n",
+       "      <td>3.833987</td>\n",
+       "      <td>0.784314</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>20</th>\n",
+       "      <td>0.104548</td>\n",
+       "      <td>0.979018</td>\n",
+       "      <td>3.796654</td>\n",
+       "      <td>0.787879</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>21</th>\n",
+       "      <td>0.092513</td>\n",
+       "      <td>0.977679</td>\n",
+       "      <td>3.842330</td>\n",
+       "      <td>0.795009</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>22</th>\n",
+       "      <td>0.092888</td>\n",
+       "      <td>0.978571</td>\n",
+       "      <td>3.855977</td>\n",
+       "      <td>0.802139</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>23</th>\n",
+       "      <td>0.085674</td>\n",
+       "      <td>0.983482</td>\n",
+       "      <td>3.843676</td>\n",
+       "      <td>0.811052</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>24</th>\n",
+       "      <td>0.073889</td>\n",
+       "      <td>0.987946</td>\n",
+       "      <td>3.855924</td>\n",
+       "      <td>0.798574</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25</th>\n",
+       "      <td>0.070386</td>\n",
+       "      <td>0.986607</td>\n",
+       "      <td>3.903577</td>\n",
+       "      <td>0.811052</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>26</th>\n",
+       "      <td>0.070243</td>\n",
+       "      <td>0.984375</td>\n",
+       "      <td>4.010518</td>\n",
+       "      <td>0.789661</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>27</th>\n",
+       "      <td>0.063253</td>\n",
+       "      <td>0.988393</td>\n",
+       "      <td>3.933264</td>\n",
+       "      <td>0.811052</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>28</th>\n",
+       "      <td>0.051594</td>\n",
+       "      <td>0.994196</td>\n",
+       "      <td>3.966866</td>\n",
+       "      <td>0.795009</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>29</th>\n",
+       "      <td>0.055196</td>\n",
+       "      <td>0.987500</td>\n",
+       "      <td>4.035394</td>\n",
+       "      <td>0.802139</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>30</th>\n",
+       "      <td>0.050213</td>\n",
+       "      <td>0.990179</td>\n",
+       "      <td>4.022369</td>\n",
+       "      <td>0.809269</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>31</th>\n",
+       "      <td>0.047225</td>\n",
+       "      <td>0.991518</td>\n",
+       "      <td>4.027649</td>\n",
+       "      <td>0.814617</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>32</th>\n",
+       "      <td>0.041895</td>\n",
+       "      <td>0.993750</td>\n",
+       "      <td>4.088426</td>\n",
+       "      <td>0.802139</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>33</th>\n",
+       "      <td>0.043031</td>\n",
+       "      <td>0.991071</td>\n",
+       "      <td>4.114517</td>\n",
+       "      <td>0.803922</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>34</th>\n",
+       "      <td>0.038416</td>\n",
+       "      <td>0.995536</td>\n",
+       "      <td>4.096894</td>\n",
+       "      <td>0.807487</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>35</th>\n",
+       "      <td>0.040092</td>\n",
+       "      <td>0.991071</td>\n",
+       "      <td>4.111500</td>\n",
+       "      <td>0.812834</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>36</th>\n",
+       "      <td>0.032241</td>\n",
+       "      <td>0.994643</td>\n",
+       "      <td>4.167528</td>\n",
+       "      <td>0.798574</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>37</th>\n",
+       "      <td>0.035291</td>\n",
+       "      <td>0.994643</td>\n",
+       "      <td>4.172002</td>\n",
+       "      <td>0.816399</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>38</th>\n",
+       "      <td>0.029142</td>\n",
+       "      <td>0.995089</td>\n",
+       "      <td>4.188559</td>\n",
+       "      <td>0.819964</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>39</th>\n",
+       "      <td>0.026098</td>\n",
+       "      <td>0.998214</td>\n",
+       "      <td>4.240377</td>\n",
+       "      <td>0.802139</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>40</th>\n",
+       "      <td>0.025485</td>\n",
+       "      <td>0.997768</td>\n",
+       "      <td>4.210416</td>\n",
+       "      <td>0.809269</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>41</th>\n",
+       "      <td>0.029039</td>\n",
+       "      <td>0.994643</td>\n",
+       "      <td>4.245789</td>\n",
+       "      <td>0.811052</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>42</th>\n",
+       "      <td>0.038559</td>\n",
+       "      <td>0.991518</td>\n",
+       "      <td>4.417270</td>\n",
+       "      <td>0.786096</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>43</th>\n",
+       "      <td>0.043408</td>\n",
+       "      <td>0.991071</td>\n",
+       "      <td>4.400871</td>\n",
+       "      <td>0.768271</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>44</th>\n",
+       "      <td>0.042944</td>\n",
+       "      <td>0.990625</td>\n",
+       "      <td>4.206236</td>\n",
+       "      <td>0.823529</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>45</th>\n",
+       "      <td>0.028191</td>\n",
+       "      <td>0.995089</td>\n",
+       "      <td>4.211978</td>\n",
+       "      <td>0.825312</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>46</th>\n",
+       "      <td>0.021191</td>\n",
+       "      <td>0.997768</td>\n",
+       "      <td>4.303451</td>\n",
+       "      <td>0.805704</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>47</th>\n",
+       "      <td>0.020631</td>\n",
+       "      <td>0.996875</td>\n",
+       "      <td>4.236072</td>\n",
+       "      <td>0.807487</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>48</th>\n",
+       "      <td>0.022236</td>\n",
+       "      <td>0.996875</td>\n",
+       "      <td>4.252170</td>\n",
+       "      <td>0.821747</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>49</th>\n",
+       "      <td>0.022179</td>\n",
+       "      <td>0.996875</td>\n",
+       "      <td>4.329636</td>\n",
+       "      <td>0.814617</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "         loss  accuracy   val_loss  val_accuracy\n",
+       "0   11.004742  0.079911  11.425354      0.149733\n",
+       "1    6.618367  0.195982   5.508847      0.199643\n",
+       "2    3.557698  0.344643   3.907562      0.176471\n",
+       "3    2.740256  0.362946   3.747744      0.258467\n",
+       "4    2.119701  0.490625   3.717331      0.279857\n",
+       "5    1.627006  0.599554   3.453233      0.376114\n",
+       "6    1.215506  0.697768   3.377179      0.393939\n",
+       "7    0.882748  0.788393   3.353643      0.506239\n",
+       "8    0.671532  0.845982   3.494065      0.543672\n",
+       "9    0.502864  0.880357   3.594764      0.586453\n",
+       "10   0.423036  0.887500   3.665407      0.645276\n",
+       "11   0.332413  0.913839   3.578811      0.672014\n",
+       "12   0.282103  0.928571   3.630975      0.682709\n",
+       "13   0.244660  0.930804   3.658487      0.700535\n",
+       "14   0.210043  0.944196   3.646290      0.736185\n",
+       "15   0.183707  0.954018   3.646698      0.754011\n",
+       "16   0.157131  0.960268   3.742814      0.773619\n",
+       "17   0.146922  0.970089   3.793929      0.741533\n",
+       "18   0.124116  0.972321   3.775696      0.752228\n",
+       "19   0.120120  0.970982   3.833987      0.784314\n",
+       "20   0.104548  0.979018   3.796654      0.787879\n",
+       "21   0.092513  0.977679   3.842330      0.795009\n",
+       "22   0.092888  0.978571   3.855977      0.802139\n",
+       "23   0.085674  0.983482   3.843676      0.811052\n",
+       "24   0.073889  0.987946   3.855924      0.798574\n",
+       "25   0.070386  0.986607   3.903577      0.811052\n",
+       "26   0.070243  0.984375   4.010518      0.789661\n",
+       "27   0.063253  0.988393   3.933264      0.811052\n",
+       "28   0.051594  0.994196   3.966866      0.795009\n",
+       "29   0.055196  0.987500   4.035394      0.802139\n",
+       "30   0.050213  0.990179   4.022369      0.809269\n",
+       "31   0.047225  0.991518   4.027649      0.814617\n",
+       "32   0.041895  0.993750   4.088426      0.802139\n",
+       "33   0.043031  0.991071   4.114517      0.803922\n",
+       "34   0.038416  0.995536   4.096894      0.807487\n",
+       "35   0.040092  0.991071   4.111500      0.812834\n",
+       "36   0.032241  0.994643   4.167528      0.798574\n",
+       "37   0.035291  0.994643   4.172002      0.816399\n",
+       "38   0.029142  0.995089   4.188559      0.819964\n",
+       "39   0.026098  0.998214   4.240377      0.802139\n",
+       "40   0.025485  0.997768   4.210416      0.809269\n",
+       "41   0.029039  0.994643   4.245789      0.811052\n",
+       "42   0.038559  0.991518   4.417270      0.786096\n",
+       "43   0.043408  0.991071   4.400871      0.768271\n",
+       "44   0.042944  0.990625   4.206236      0.823529\n",
+       "45   0.028191  0.995089   4.211978      0.825312\n",
+       "46   0.021191  0.997768   4.303451      0.805704\n",
+       "47   0.020631  0.996875   4.236072      0.807487\n",
+       "48   0.022236  0.996875   4.252170      0.821747\n",
+       "49   0.022179  0.996875   4.329636      0.814617"
+      ]
+     },
+     "execution_count": 67,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "hist\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.8.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}