|
a |
|
b/Statistical Analysis.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": {}, |
|
|
6 |
"source": [ |
|
|
7 |
"<h1 align=\"center\"> Machine learning-based prediction of early recurrence in glioblastoma patients: a glance towards precision medicine <br><br> [Statistical Analysis]</h1>" |
|
|
8 |
] |
|
|
9 |
}, |
|
|
10 |
{ |
|
|
11 |
"cell_type": "markdown", |
|
|
12 |
"metadata": {}, |
|
|
13 |
"source": [ |
|
|
14 |
"<h2>[1] Library</h2>" |
|
|
15 |
] |
|
|
16 |
}, |
|
|
17 |
{ |
|
|
18 |
"cell_type": "code", |
|
|
19 |
"execution_count": null, |
|
|
20 |
"metadata": {}, |
|
|
21 |
"outputs": [], |
|
|
22 |
"source": [ |
|
|
23 |
"# OS library\n", |
|
|
24 |
"import os\n", |
|
|
25 |
"import sys\n", |
|
|
26 |
"import argparse\n", |
|
|
27 |
"import random\n", |
|
|
28 |
"from math import sqrt\n", |
|
|
29 |
"\n", |
|
|
30 |
"# Analysis\n", |
|
|
31 |
"import numpy as np\n", |
|
|
32 |
"import pandas as pd\n", |
|
|
33 |
"import seaborn as sns\n", |
|
|
34 |
"import matplotlib.pyplot as plt\n", |
|
|
35 |
"\n", |
|
|
36 |
"from sklearn.linear_model import LogisticRegression\n", |
|
|
37 |
"from scipy import stats\n", |
|
|
38 |
"import statsmodels.api as sm\n", |
|
|
39 |
"from statsmodels.stats.proportion import proportion_confint\n", |
|
|
40 |
"\n", |
|
|
41 |
"import pingouin as pg\n", |
|
|
42 |
"%matplotlib inline" |
|
|
43 |
] |
|
|
44 |
}, |
|
|
45 |
{ |
|
|
46 |
"cell_type": "markdown", |
|
|
47 |
"metadata": {}, |
|
|
48 |
"source": [ |
|
|
49 |
"<h2>[2] Data Preprocessing</h2>" |
|
|
50 |
] |
|
|
51 |
}, |
|
|
52 |
{ |
|
|
53 |
"cell_type": "markdown", |
|
|
54 |
"metadata": {}, |
|
|
55 |
"source": [ |
|
|
56 |
"<h4>[-] Load the database</h4>" |
|
|
57 |
] |
|
|
58 |
}, |
|
|
59 |
{ |
|
|
60 |
"cell_type": "code", |
|
|
61 |
"execution_count": null, |
|
|
62 |
"metadata": {}, |
|
|
63 |
"outputs": [], |
|
|
64 |
"source": [ |
|
|
65 |
"file = os.path.join(sys.path[0], \"db.xlsx\")\n", |
|
|
66 |
"db = pd.read_excel(file)\n", |
|
|
67 |
"\n", |
|
|
68 |
"print(\"N° of patients: {}\".format(len(db)))\n", |
|
|
69 |
"print(\"N° of columns: {}\".format(db.shape[1]))\n", |
|
|
70 |
"db.head()" |
|
|
71 |
] |
|
|
72 |
}, |
|
|
73 |
{ |
|
|
74 |
"cell_type": "markdown", |
|
|
75 |
"metadata": {}, |
|
|
76 |
"source": [ |
|
|
77 |
"<h4>[-] Drop unwanted columns + create <i>'results'</i> column</h4>" |
|
|
78 |
] |
|
|
79 |
}, |
|
|
80 |
{ |
|
|
81 |
"cell_type": "code", |
|
|
82 |
"execution_count": null, |
|
|
83 |
"metadata": {}, |
|
|
84 |
"outputs": [], |
|
|
85 |
"source": [ |
|
|
86 |
"df = db.drop(['Name_Surname','SURVIVAL', 'OS', '...'], axis = 'columns')\n", |
|
|
87 |
"\n", |
|
|
88 |
"print(\"Effective features to consider: {} \".format(len(df.columns)-1))\n", |
|
|
89 |
"print(\"Creating 'result' column...\")\n", |
|
|
90 |
"\n", |
|
|
91 |
"# 0 = No relapse\n", |
|
|
92 |
"df.loc[df['PFS'] > 6, 'outcome'] = 0\n", |
|
|
93 |
"\n", |
|
|
94 |
"# 1 = Early relapse (within 6 months)\n", |
|
|
95 |
"df.loc[df['PFS'] <= 6, 'outcome'] = 1" |
|
|
96 |
] |
|
|
97 |
}, |
|
|
98 |
{ |
|
|
99 |
"cell_type": "markdown", |
|
|
100 |
"metadata": {}, |
|
|
101 |
"source": [ |
|
|
102 |
"<h2>[3] Count and Frequency</h2>" |
|
|
103 |
] |
|
|
104 |
}, |
|
|
105 |
{ |
|
|
106 |
"cell_type": "code", |
|
|
107 |
"execution_count": null, |
|
|
108 |
"metadata": {}, |
|
|
109 |
"outputs": [], |
|
|
110 |
"source": [ |
|
|
111 |
"df.groupby(['outcome', '...']).count()" |
|
|
112 |
] |
|
|
113 |
}, |
|
|
114 |
{ |
|
|
115 |
"cell_type": "code", |
|
|
116 |
"execution_count": null, |
|
|
117 |
"metadata": {}, |
|
|
118 |
"outputs": [], |
|
|
119 |
"source": [ |
|
|
120 |
"df['...'].describe()" |
|
|
121 |
] |
|
|
122 |
}, |
|
|
123 |
{ |
|
|
124 |
"cell_type": "markdown", |
|
|
125 |
"metadata": {}, |
|
|
126 |
"source": [ |
|
|
127 |
"<h2>[4] Statistical Association</h2>\n", |
|
|
128 |
"<ul>\n", |
|
|
129 |
" <li>Levene's test is an inferential statistic used to assess the equality of variances for a variable calculated for two or more groups. If p-value >> 0.05, no difference in variances between the groups</li>\n", |
|
|
130 |
" <li>F-one way ANOVA test is performed if the variance is the same</li>\n", |
|
|
131 |
"</ul>" |
|
|
132 |
] |
|
|
133 |
}, |
|
|
134 |
{ |
|
|
135 |
"cell_type": "code", |
|
|
136 |
"execution_count": null, |
|
|
137 |
"metadata": {}, |
|
|
138 |
"outputs": [], |
|
|
139 |
"source": [ |
|
|
140 |
"non_early = df[df['outcome'] == 0]['...']\n", |
|
|
141 |
"early_relapse = df[df['outcome'] == 1]['...']\n", |
|
|
142 |
"\n", |
|
|
143 |
"print(non_early.shape)\n", |
|
|
144 |
"print(stats.levene(non_early, early_relapse))\n", |
|
|
145 |
"print(stats.f_oneway(non_early, early_relapse))\n", |
|
|
146 |
"\n", |
|
|
147 |
"## Change equal_var to False if Levene p-value is below 0.05\n", |
|
|
148 |
"print(stats.ttest_ind(non_early, early_relapse, equal_var=True))" |
|
|
149 |
] |
|
|
150 |
}, |
|
|
151 |
{ |
|
|
152 |
"cell_type": "code", |
|
|
153 |
"execution_count": null, |
|
|
154 |
"metadata": {}, |
|
|
155 |
"outputs": [], |
|
|
156 |
"source": [ |
|
|
157 |
"sex_ct = pd.crosstab(df['...'], df['outcome'])\n", |
|
|
158 |
"print(\"--- *** Contingency Table *** --- \\n\",sex_ct)\n", |
|
|
159 |
"\n", |
|
|
160 |
"print(\"\\n--- *** Chi-Square *** ---\")\n", |
|
|
161 |
"stat, p, dof, expected = stats.chi2_contingency(sex_ct, correction = False)\n", |
|
|
162 |
"print(\"DOF=%d\" % dof)\n", |
|
|
163 |
"print(\"Expected values = \", expected)\n", |
|
|
164 |
"print(\"p-value = \", p)\n", |
|
|
165 |
"print(\"stat = \", stat)\n", |
|
|
166 |
"\n", |
|
|
167 |
"prob = 0.95\n", |
|
|
168 |
"critical = stats.chi2.ppf(prob, dof)\n", |
|
|
169 |
"if abs(stat) >= critical:\n", |
|
|
170 |
" print('\\nDependent (reject H0), [Critical: {}]'.format(critical))\n", |
|
|
171 |
"else:\n", |
|
|
172 |
" print('\\nIndependent (fail to reject H0), [Critical: {}]'.format(critical))" |
|
|
173 |
] |
|
|
174 |
}, |
|
|
175 |
{ |
|
|
176 |
"cell_type": "markdown", |
|
|
177 |
"metadata": {}, |
|
|
178 |
"source": [ |
|
|
179 |
"<h4>[-] Holm-Bonferroni correction</h4>" |
|
|
180 |
] |
|
|
181 |
}, |
|
|
182 |
{ |
|
|
183 |
"cell_type": "code", |
|
|
184 |
"execution_count": null, |
|
|
185 |
"metadata": {}, |
|
|
186 |
"outputs": [], |
|
|
187 |
"source": [ |
|
|
188 |
"pvals = [...]\n", |
|
|
189 |
"significant, adjusted = pg.multicomp(pvals, alpha=0.05, method='holm')\n", |
|
|
190 |
"tab = {'Uncorrected':pvals, 'Adjusted':adjusted, 'Significant':significant}\n", |
|
|
191 |
"df = pd.DataFrame(tab)\n", |
|
|
192 |
"df" |
|
|
193 |
] |
|
|
194 |
}, |
|
|
195 |
{ |
|
|
196 |
"cell_type": "markdown", |
|
|
197 |
"metadata": {}, |
|
|
198 |
"source": [ |
|
|
199 |
"<h2>[5] Multivariable Analysis</h2>" |
|
|
200 |
] |
|
|
201 |
}, |
|
|
202 |
{ |
|
|
203 |
"cell_type": "markdown", |
|
|
204 |
"metadata": {}, |
|
|
205 |
"source": [ |
|
|
206 |
"<h4>[-] Label encoding</h4>" |
|
|
207 |
] |
|
|
208 |
}, |
|
|
209 |
{ |
|
|
210 |
"cell_type": "code", |
|
|
211 |
"execution_count": null, |
|
|
212 |
"metadata": {}, |
|
|
213 |
"outputs": [], |
|
|
214 |
"source": [ |
|
|
215 |
"dummy_v = ['localization', '...']\n", |
|
|
216 |
"df = pd.get_dummies(df, columns = dummy_v, prefix = dummy_v)\n", |
|
|
217 |
"df[['..']].astype(float)\n", |
|
|
218 |
"df.head(5)" |
|
|
219 |
] |
|
|
220 |
}, |
|
|
221 |
{ |
|
|
222 |
"cell_type": "code", |
|
|
223 |
"execution_count": null, |
|
|
224 |
"metadata": {}, |
|
|
225 |
"outputs": [], |
|
|
226 |
"source": [ |
|
|
227 |
"cols_to_keep = ['...']\n", |
|
|
228 |
"data = df[cols_to_keep]\n", |
|
|
229 |
"\n", |
|
|
230 |
"# manually add the intercept\n", |
|
|
231 |
"data['intercept'] = 1.0\n", |
|
|
232 |
"data.head()\n", |
|
|
233 |
"data.columns" |
|
|
234 |
] |
|
|
235 |
}, |
|
|
236 |
{ |
|
|
237 |
"cell_type": "code", |
|
|
238 |
"execution_count": null, |
|
|
239 |
"metadata": {}, |
|
|
240 |
"outputs": [], |
|
|
241 |
"source": [ |
|
|
242 |
"train_cols = ['...']\n", |
|
|
243 |
"logit = sm.Logit(data['outcome'], data[train_cols], missing = 'drop')\n", |
|
|
244 |
"result = logit.fit()" |
|
|
245 |
] |
|
|
246 |
}, |
|
|
247 |
{ |
|
|
248 |
"cell_type": "code", |
|
|
249 |
"execution_count": null, |
|
|
250 |
"metadata": {}, |
|
|
251 |
"outputs": [], |
|
|
252 |
"source": [ |
|
|
253 |
"result.summary(alpha = 0.05)" |
|
|
254 |
] |
|
|
255 |
}, |
|
|
256 |
{ |
|
|
257 |
"cell_type": "code", |
|
|
258 |
"execution_count": null, |
|
|
259 |
"metadata": {}, |
|
|
260 |
"outputs": [], |
|
|
261 |
"source": [ |
|
|
262 |
"coef = result.params\n", |
|
|
263 |
"p = result.pvalues\n", |
|
|
264 |
"conf = result.conf_int(alpha = 0.05)\n", |
|
|
265 |
"\n", |
|
|
266 |
"conf['OR'] = coef\n", |
|
|
267 |
"conf.columns = ['2.5%', '97.5%', 'OR']\n", |
|
|
268 |
"\n", |
|
|
269 |
"conf = np.exp(conf)\n", |
|
|
270 |
"conf['p-value'] = p" |
|
|
271 |
] |
|
|
272 |
}, |
|
|
273 |
{ |
|
|
274 |
"cell_type": "markdown", |
|
|
275 |
"metadata": {}, |
|
|
276 |
"source": [ |
|
|
277 |
"<h4>[-] Export Multivariable as Excel file</h4>" |
|
|
278 |
] |
|
|
279 |
}, |
|
|
280 |
{ |
|
|
281 |
"cell_type": "code", |
|
|
282 |
"execution_count": null, |
|
|
283 |
"metadata": {}, |
|
|
284 |
"outputs": [], |
|
|
285 |
"source": [ |
|
|
286 |
"conf.to_excel(\"multivariable.xlsx\")" |
|
|
287 |
] |
|
|
288 |
}, |
|
|
289 |
{ |
|
|
290 |
"cell_type": "code", |
|
|
291 |
"execution_count": null, |
|
|
292 |
"metadata": {}, |
|
|
293 |
"outputs": [], |
|
|
294 |
"source": [] |
|
|
295 |
}, |
|
|
296 |
{ |
|
|
297 |
"cell_type": "code", |
|
|
298 |
"execution_count": null, |
|
|
299 |
"metadata": {}, |
|
|
300 |
"outputs": [], |
|
|
301 |
"source": [] |
|
|
302 |
} |
|
|
303 |
], |
|
|
304 |
"metadata": { |
|
|
305 |
"kernelspec": { |
|
|
306 |
"display_name": "Python 3", |
|
|
307 |
"language": "python", |
|
|
308 |
"name": "python3" |
|
|
309 |
}, |
|
|
310 |
"language_info": { |
|
|
311 |
"codemirror_mode": { |
|
|
312 |
"name": "ipython", |
|
|
313 |
"version": 3 |
|
|
314 |
}, |
|
|
315 |
"file_extension": ".py", |
|
|
316 |
"mimetype": "text/x-python", |
|
|
317 |
"name": "python", |
|
|
318 |
"nbconvert_exporter": "python", |
|
|
319 |
"pygments_lexer": "ipython3", |
|
|
320 |
"version": "3.7.4" |
|
|
321 |
} |
|
|
322 |
}, |
|
|
323 |
"nbformat": 4, |
|
|
324 |
"nbformat_minor": 2 |
|
|
325 |
} |