|
a |
|
b/Random Forest.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": {}, |
|
|
6 |
"source": [ |
|
|
7 |
"<h1 align=\"center\">Machine learning-based prediction of early recurrence in glioblastoma patients: a glance towards precision medicine <br><br>[Random Forest]</h1>" |
|
|
8 |
] |
|
|
9 |
}, |
|
|
10 |
{ |
|
|
11 |
"cell_type": "markdown", |
|
|
12 |
"metadata": {}, |
|
|
13 |
"source": [ |
|
|
14 |
"<h2>[1] Library</h2>" |
|
|
15 |
] |
|
|
16 |
}, |
|
|
17 |
{ |
|
|
18 |
"cell_type": "code", |
|
|
19 |
"execution_count": null, |
|
|
20 |
"metadata": {}, |
|
|
21 |
"outputs": [], |
|
|
22 |
"source": [ |
|
|
23 |
"# OS library\n", |
|
|
24 |
"import os\n", |
|
|
25 |
"import sys\n", |
|
|
26 |
"import argparse\n", |
|
|
27 |
"import itertools\n", |
|
|
28 |
"import random\n", |
|
|
29 |
"\n", |
|
|
30 |
"# Analysis\n", |
|
|
31 |
"import numpy as np\n", |
|
|
32 |
"import pandas as pd\n", |
|
|
33 |
"import seaborn as sns\n", |
|
|
34 |
"import matplotlib.pyplot as plt\n", |
|
|
35 |
"\n", |
|
|
36 |
"# Sklearn\n", |
|
|
37 |
"from boruta import BorutaPy\n", |
|
|
38 |
"from sklearn.preprocessing import LabelEncoder\n", |
|
|
39 |
"from sklearn.model_selection import train_test_split\n", |
|
|
40 |
"from sklearn.ensemble import RandomForestClassifier\n", |
|
|
41 |
"from sklearn.metrics import confusion_matrix, f1_score, recall_score, classification_report, accuracy_score, auc, roc_curve\n", |
|
|
42 |
"from sklearn.model_selection import RandomizedSearchCV\n", |
|
|
43 |
"\n", |
|
|
44 |
"import scikitplot as skplt\n", |
|
|
45 |
"from imblearn.over_sampling import RandomOverSampler, SMOTENC, SMOTE" |
|
|
46 |
] |
|
|
47 |
}, |
|
|
48 |
{ |
|
|
49 |
"cell_type": "markdown", |
|
|
50 |
"metadata": {}, |
|
|
51 |
"source": [ |
|
|
52 |
"<h2>[2] Exploratory data analysis and Data Preprocessing</h2>" |
|
|
53 |
] |
|
|
54 |
}, |
|
|
55 |
{ |
|
|
56 |
"cell_type": "markdown", |
|
|
57 |
"metadata": {}, |
|
|
58 |
"source": [ |
|
|
59 |
"<h4>[-] Load the database</h4>" |
|
|
60 |
] |
|
|
61 |
}, |
|
|
62 |
{ |
|
|
63 |
"cell_type": "code", |
|
|
64 |
"execution_count": null, |
|
|
65 |
"metadata": {}, |
|
|
66 |
"outputs": [], |
|
|
67 |
"source": [ |
|
|
68 |
"file = os.path.join(sys.path[0], \"db.xlsx\")\n", |
|
|
69 |
"db = pd.read_excel(file)\n", |
|
|
70 |
"\n", |
|
|
71 |
"print(\"N° of patients: {}\".format(len(db)))\n", |
|
|
72 |
"print(\"N° of columns: {}\".format(db.shape[1]))\n", |
|
|
73 |
"db.head()" |
|
|
74 |
] |
|
|
75 |
}, |
|
|
76 |
{ |
|
|
77 |
"cell_type": "markdown", |
|
|
78 |
"metadata": {}, |
|
|
79 |
"source": [ |
|
|
80 |
"<h4>[-] Drop unwanted columns + create <i>'results'</i> column</h4>" |
|
|
81 |
] |
|
|
82 |
}, |
|
|
83 |
{ |
|
|
84 |
"cell_type": "code", |
|
|
85 |
"execution_count": null, |
|
|
86 |
"metadata": {}, |
|
|
87 |
"outputs": [], |
|
|
88 |
"source": [ |
|
|
89 |
"df = db.drop(['Name_Surname','...'], axis = 'columns')\n", |
|
|
90 |
"\n", |
|
|
91 |
"print(\"Effective features to consider: {} \".format(len(df.columns)-1))\n", |
|
|
92 |
"print(\"Creating 'result' column...\")\n", |
|
|
93 |
"\n", |
|
|
94 |
"# 0 = No relapse\n", |
|
|
95 |
"df.loc[df['PFS'] > 6, 'result'] = 0\n", |
|
|
96 |
"\n", |
|
|
97 |
"# 1 = Early relapse (within 6 months)\n", |
|
|
98 |
"df.loc[df['PFS'] <= 6, 'result'] = 1\n", |
|
|
99 |
"\n", |
|
|
100 |
"df.head()" |
|
|
101 |
] |
|
|
102 |
}, |
|
|
103 |
{ |
|
|
104 |
"cell_type": "markdown", |
|
|
105 |
"metadata": {}, |
|
|
106 |
"source": [ |
|
|
107 |
"<h4>[-] Check for class imbalance in the <i>'results'</i> column </h4>" |
|
|
108 |
] |
|
|
109 |
}, |
|
|
110 |
{ |
|
|
111 |
"cell_type": "code", |
|
|
112 |
"execution_count": null, |
|
|
113 |
"metadata": {}, |
|
|
114 |
"outputs": [], |
|
|
115 |
"source": [ |
|
|
116 |
"print(\"PFS Overview\")\n", |
|
|
117 |
"print(df.result.value_counts())\n", |
|
|
118 |
"\n", |
|
|
119 |
"df.result.value_counts().plot(kind='pie', autopct='%1.0f%%', colors=['skyblue', 'orange'], explode=(0.05, 0.05))" |
|
|
120 |
] |
|
|
121 |
}, |
|
|
122 |
{ |
|
|
123 |
"cell_type": "markdown", |
|
|
124 |
"metadata": {}, |
|
|
125 |
"source": [ |
|
|
126 |
"<h4>[-] Label encoding of the categorical variables </h4>" |
|
|
127 |
] |
|
|
128 |
}, |
|
|
129 |
{ |
|
|
130 |
"cell_type": "code", |
|
|
131 |
"execution_count": null, |
|
|
132 |
"metadata": {}, |
|
|
133 |
"outputs": [], |
|
|
134 |
"source": [ |
|
|
135 |
"df['sex'] =df['sex'].astype('category')\n", |
|
|
136 |
"\n", |
|
|
137 |
"#df['Ki67'] =df['Ki67'].astype(int)\n", |
|
|
138 |
"df['MGMT'] =df['MGMT'].astype('category')\n", |
|
|
139 |
"df['IDH1'] =df['IDH1'].astype('category')\n", |
|
|
140 |
"\n", |
|
|
141 |
"df['side'] =df['side'].astype('category')\n", |
|
|
142 |
"df['ependima'] =df['ependima'].astype('category')\n", |
|
|
143 |
"df['cc'] =df['cc'].astype('category')\n", |
|
|
144 |
"df['necrotico_cistico'] =df['necrotico_cistico'].astype('category')\n", |
|
|
145 |
"df['shift'] =df['shift'].astype('category')\n", |
|
|
146 |
"\n", |
|
|
147 |
"## VARIABLE TO ONE-HOT-ENCODE\n", |
|
|
148 |
"df['localization'] =df['localization'].astype(int)\n", |
|
|
149 |
"df['clinica_esordio'] =df['clinica_esordio'].astype(int)\n", |
|
|
150 |
"df['immediate_p_o'] =df['immediate_p_o'].astype(int)\n", |
|
|
151 |
"df['onco_Protocol'] =df['onco_Protocol'].astype(int)\n", |
|
|
152 |
"\n", |
|
|
153 |
"df['result'] =df['result'].astype(int)\n", |
|
|
154 |
"\n", |
|
|
155 |
"dummy_v = ['localization', 'clinica_esordio', 'onco_Protocol', 'immediate_p_o']\n", |
|
|
156 |
"\n", |
|
|
157 |
"df = pd.get_dummies(df, columns = dummy_v, prefix = dummy_v)" |
|
|
158 |
] |
|
|
159 |
}, |
|
|
160 |
{ |
|
|
161 |
"cell_type": "markdown", |
|
|
162 |
"metadata": {}, |
|
|
163 |
"source": [ |
|
|
164 |
"<h4>[-] Evaluate variables' correlation with <u>'PFS'</u> columns </h4>" |
|
|
165 |
] |
|
|
166 |
}, |
|
|
167 |
{ |
|
|
168 |
"cell_type": "code", |
|
|
169 |
"execution_count": null, |
|
|
170 |
"metadata": {}, |
|
|
171 |
"outputs": [], |
|
|
172 |
"source": [ |
|
|
173 |
"corr = df.corr()\n", |
|
|
174 |
"ax = sns.heatmap(\n", |
|
|
175 |
" corr, \n", |
|
|
176 |
" vmin=-1, vmax=1, center=0,\n", |
|
|
177 |
" cmap=sns.diverging_palette(20, 220, n=200),\n", |
|
|
178 |
" square=True\n", |
|
|
179 |
")\n", |
|
|
180 |
"ax.set_xticklabels(\n", |
|
|
181 |
" ax.get_xticklabels(),\n", |
|
|
182 |
" rotation=60,\n", |
|
|
183 |
" horizontalalignment='right'\n", |
|
|
184 |
");" |
|
|
185 |
] |
|
|
186 |
}, |
|
|
187 |
{ |
|
|
188 |
"cell_type": "markdown", |
|
|
189 |
"metadata": {}, |
|
|
190 |
"source": [ |
|
|
191 |
"<h2>[3] Prediction Models</h2>" |
|
|
192 |
] |
|
|
193 |
}, |
|
|
194 |
{ |
|
|
195 |
"cell_type": "markdown", |
|
|
196 |
"metadata": {}, |
|
|
197 |
"source": [ |
|
|
198 |
"<h4> [-] Training and testing set splitting</h4>" |
|
|
199 |
] |
|
|
200 |
}, |
|
|
201 |
{ |
|
|
202 |
"cell_type": "code", |
|
|
203 |
"execution_count": 5, |
|
|
204 |
"metadata": { |
|
|
205 |
"collapsed": true |
|
|
206 |
}, |
|
|
207 |
"outputs": [ |
|
|
208 |
{ |
|
|
209 |
"ename": "NameError", |
|
|
210 |
"evalue": "name 'df' is not defined", |
|
|
211 |
"output_type": "error", |
|
|
212 |
"traceback": [ |
|
|
213 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
|
|
214 |
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", |
|
|
215 |
"\u001b[0;32m<ipython-input-5-48cdcc32916c>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtarget\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'result'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0minputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'result'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'PFS'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'columns'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
216 |
"\u001b[0;31mNameError\u001b[0m: name 'df' is not defined" |
|
|
217 |
] |
|
|
218 |
} |
|
|
219 |
], |
|
|
220 |
"source": [ |
|
|
221 |
"target = df['result']\n", |
|
|
222 |
"inputs = df.drop(['result', 'PFS'], axis = 'columns')\n", |
|
|
223 |
"x_train, x_test, y_train, y_test = train_test_split(inputs['...'],target,test_size=0.20, random_state=10)" |
|
|
224 |
] |
|
|
225 |
}, |
|
|
226 |
{ |
|
|
227 |
"cell_type": "markdown", |
|
|
228 |
"metadata": {}, |
|
|
229 |
"source": [ |
|
|
230 |
"<h4> [-] BORUTA Features Selection</h4>" |
|
|
231 |
] |
|
|
232 |
}, |
|
|
233 |
{ |
|
|
234 |
"cell_type": "code", |
|
|
235 |
"execution_count": null, |
|
|
236 |
"metadata": {}, |
|
|
237 |
"outputs": [], |
|
|
238 |
"source": [ |
|
|
239 |
"x = x_train.values\n", |
|
|
240 |
"y = y_train.values\n", |
|
|
241 |
"y = y.ravel()\n", |
|
|
242 |
"\n", |
|
|
243 |
"rf_boruta = RandomForestClassifier(n_jobs=-1, class_weight={0:1, 1:3}, max_depth=3)\n", |
|
|
244 |
"feat_selector = BorutaPy(rf_boruta, n_estimators='auto', verbose=0, random_state=42, perc='...')\n", |
|
|
245 |
"feat_selector.fit(x, y)\n", |
|
|
246 |
"\n", |
|
|
247 |
"cols = inputs.columns[feat_selector.support_]\n", |
|
|
248 |
"print(\"N° of selected features: {}\".format(len(cols)))\n", |
|
|
249 |
"print(cols) " |
|
|
250 |
] |
|
|
251 |
}, |
|
|
252 |
{ |
|
|
253 |
"cell_type": "markdown", |
|
|
254 |
"metadata": {}, |
|
|
255 |
"source": [ |
|
|
256 |
"<h4> [-] Random Grid Search Hyperparameter tuning</h4>" |
|
|
257 |
] |
|
|
258 |
}, |
|
|
259 |
{ |
|
|
260 |
"cell_type": "code", |
|
|
261 |
"execution_count": null, |
|
|
262 |
"metadata": {}, |
|
|
263 |
"outputs": [], |
|
|
264 |
"source": [ |
|
|
265 |
"# The function to measure the quality of a split\n", |
|
|
266 |
"criterion = ['gini', 'entropy']\n", |
|
|
267 |
"\n", |
|
|
268 |
"# Number of trees in random forest\n", |
|
|
269 |
"n_estimators = [int(x) for x in np.linspace(start = 20, stop = 50, num = 5)]\n", |
|
|
270 |
"\n", |
|
|
271 |
"# Number of features to consider at every split\n", |
|
|
272 |
"max_features = ['auto', 'sqrt']\n", |
|
|
273 |
"\n", |
|
|
274 |
"# Maximum number of levels in tree\n", |
|
|
275 |
"max_depth = [int(x) for x in np.linspace(14, 30, num = 2)]\n", |
|
|
276 |
"max_depth.append(None)\n", |
|
|
277 |
"\n", |
|
|
278 |
"# Minimum number of samples required to split a node\n", |
|
|
279 |
"min_samples_split = [ 2, 3, 4, 5, 8]\n", |
|
|
280 |
"\n", |
|
|
281 |
"# Minimum number of samples required at each leaf node\n", |
|
|
282 |
"min_samples_leaf = [1, 2, 3, 4, 5, 6]\n", |
|
|
283 |
"\n", |
|
|
284 |
"max_leaf_nodes = [None, 2, 3, 4, 5, 6]\n", |
|
|
285 |
"# Method of selecting samples for training each tree\n", |
|
|
286 |
"bootstrap = [True, False]\n", |
|
|
287 |
"\n", |
|
|
288 |
"random_grid = {'criterion': criterion,\n", |
|
|
289 |
" 'n_estimators': n_estimators,\n", |
|
|
290 |
" 'max_features': max_features,\n", |
|
|
291 |
" 'max_depth': max_depth,\n", |
|
|
292 |
" 'min_samples_split': min_samples_split,\n", |
|
|
293 |
" 'min_samples_leaf': min_samples_leaf,\n", |
|
|
294 |
" 'max_leaf_nodes': max_leaf_nodes,\n", |
|
|
295 |
" 'bootstrap':bootstrap\n", |
|
|
296 |
" }\n", |
|
|
297 |
"\n", |
|
|
298 |
"# First create the base model to tune\n", |
|
|
299 |
"rf = RandomForestClassifier(random_state=42,\n", |
|
|
300 |
" n_jobs = -1, \n", |
|
|
301 |
" class_weight=class_weight)\n", |
|
|
302 |
"\n", |
|
|
303 |
"# Random search of parameters, using 5 fold cross validation, different combinations, and use all available cores\n", |
|
|
304 |
"rf_random = RandomizedSearchCV(estimator = rf, \n", |
|
|
305 |
" param_distributions = random_grid, \n", |
|
|
306 |
" n_iter = 500, \n", |
|
|
307 |
" cv = 5)\n", |
|
|
308 |
"# Fit the random search model\n", |
|
|
309 |
"rf_random.fit(x_train, y_train)\n", |
|
|
310 |
"rf_random.best_params_" |
|
|
311 |
] |
|
|
312 |
}, |
|
|
313 |
{ |
|
|
314 |
"cell_type": "markdown", |
|
|
315 |
"metadata": {}, |
|
|
316 |
"source": [ |
|
|
317 |
"<h4>[-] SMOTE-NC</h4>" |
|
|
318 |
] |
|
|
319 |
}, |
|
|
320 |
{ |
|
|
321 |
"cell_type": "code", |
|
|
322 |
"execution_count": null, |
|
|
323 |
"metadata": {}, |
|
|
324 |
"outputs": [], |
|
|
325 |
"source": [ |
|
|
326 |
"smote_nc = SMOTENC(categorical_features=[3,4,10,11], k_neighbors= 3, random_state=42)\n", |
|
|
327 |
"x_smote_train, y_smote_train = smote_nc.fit_resample(x_train, y_train)" |
|
|
328 |
] |
|
|
329 |
}, |
|
|
330 |
{ |
|
|
331 |
"cell_type": "markdown", |
|
|
332 |
"metadata": {}, |
|
|
333 |
"source": [ |
|
|
334 |
"<h4>[-] Random Forest Model</h4>" |
|
|
335 |
] |
|
|
336 |
}, |
|
|
337 |
{ |
|
|
338 |
"cell_type": "code", |
|
|
339 |
"execution_count": null, |
|
|
340 |
"metadata": {}, |
|
|
341 |
"outputs": [], |
|
|
342 |
"source": [ |
|
|
343 |
"rm_smote = RandomForestClassifier(random_state = 42,\n", |
|
|
344 |
" criterion= '...',\n", |
|
|
345 |
" n_estimators = '...',\n", |
|
|
346 |
" min_samples_split = '...',\n", |
|
|
347 |
" min_samples_leaf = '...',\n", |
|
|
348 |
" max_leaf_nodes = '...',\n", |
|
|
349 |
" max_features = '...',\n", |
|
|
350 |
" max_depth = '...',\n", |
|
|
351 |
" bootstrap = '...')\n", |
|
|
352 |
"\n", |
|
|
353 |
"rm_smote.fit(x_smote_train, y_smote_train)\n", |
|
|
354 |
"print(\"Trained \\n\")\n", |
|
|
355 |
"\n", |
|
|
356 |
"score_rf_smote = rm_smote.score(x_test, y_test)\n", |
|
|
357 |
"print(\"Random Forest accuracy: \", round(score_rf_smote*100,2), \"% \\n\")\n", |
|
|
358 |
"\n", |
|
|
359 |
"y_smote_predicted = rm_smote.predict(x_test)\n", |
|
|
360 |
"cm_rf_smote = confusion_matrix(y_test, y_smote_predicted)\n", |
|
|
361 |
"print(cm_rf_smote, \"\\n\")\n", |
|
|
362 |
"\n", |
|
|
363 |
"false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_smote_predicted)\n", |
|
|
364 |
"roc_auc = auc(false_positive_rate, true_positive_rate)\n", |
|
|
365 |
"\n", |
|
|
366 |
"print('1. The F-1 Score of the model {} \\n '.format(round(f1_score(y_test, y_smote_predicted, average = 'macro'), 2)))\n", |
|
|
367 |
"print('2. The Recall Score of the model {} \\n '.format(round(recall_score(y_test, y_smote_predicted, average = 'macro'), 2)))\n", |
|
|
368 |
"print('3. Classification report \\n {} \\n'.format(classification_report(y_test, y_smote_predicted)))\n", |
|
|
369 |
"print('3. AUC: \\n {} \\n'.format(roc_auc))\n", |
|
|
370 |
"\n", |
|
|
371 |
"tn, fp, fn, tp = cm_rf_smote.ravel()\n", |
|
|
372 |
"\n", |
|
|
373 |
"# Sensitivity, hit rate, Recall, or true positive rate\n", |
|
|
374 |
"tpr = tp/(tp+fn)\n", |
|
|
375 |
"print(\"Sensitivity (TPR): {}\".format(tpr))\n", |
|
|
376 |
"\n", |
|
|
377 |
"# Specificity or true negative rate\n", |
|
|
378 |
"tnr = tn/(tn+fp)\n", |
|
|
379 |
"print(\"Specificity (TNR): {}\".format(tnr))\n", |
|
|
380 |
"\n", |
|
|
381 |
"# Precision or positive predictive value\n", |
|
|
382 |
"ppv = tp/(tp+fp)\n", |
|
|
383 |
"print(\"Precision (PPV): {}\".format(ppv))\n", |
|
|
384 |
"\n", |
|
|
385 |
"# Negative predictive value\n", |
|
|
386 |
"npv = tn/(tn+fn)\n", |
|
|
387 |
"print(\"Negative Predictive Value (NPV): {}\".format(npv))\n", |
|
|
388 |
"\n", |
|
|
389 |
"# False positive rate\n", |
|
|
390 |
"fpr = fp / (fp + tn)\n", |
|
|
391 |
"print(\"False Positive Rate (FPV): {}\".format(fpr))" |
|
|
392 |
] |
|
|
393 |
}, |
|
|
394 |
{ |
|
|
395 |
"cell_type": "markdown", |
|
|
396 |
"metadata": {}, |
|
|
397 |
"source": [ |
|
|
398 |
"<h4> [-] Features Importance Plot </h4>" |
|
|
399 |
] |
|
|
400 |
}, |
|
|
401 |
{ |
|
|
402 |
"cell_type": "code", |
|
|
403 |
"execution_count": null, |
|
|
404 |
"metadata": {}, |
|
|
405 |
"outputs": [], |
|
|
406 |
"source": [ |
|
|
407 |
"features = x_train.columns.values\n", |
|
|
408 |
"\n", |
|
|
409 |
"features[0] = 'Age'\n", |
|
|
410 |
"features[6] = 'Tumor volume T1'\n", |
|
|
411 |
"features[7] = 'edema volume'\n", |
|
|
412 |
"features[8] = 'Residual tumor'\n", |
|
|
413 |
"features[9] = 'Pre-operative KPS'\n", |
|
|
414 |
"features[10] = 'Post-operative KPS'\n", |
|
|
415 |
"features[11] = 'Onset neurological symptoms = 1'\n", |
|
|
416 |
"features[12] = 'Oncological protocol = 0'\n", |
|
|
417 |
"features[13] = 'Oncological protocol = 1'\n", |
|
|
418 |
"features[14] = 'Oncological protocol = 2'\n", |
|
|
419 |
"\n", |
|
|
420 |
"indices = np.argsort(importances)\n", |
|
|
421 |
"\n", |
|
|
422 |
"plt.title('Random Forest Classifier Features Importance')\n", |
|
|
423 |
"plt.barh(range(len(indices)), importances[indices], color='g', align='center')\n", |
|
|
424 |
"plt.yticks(range(len(indices)), [features[i] for i in indices])\n", |
|
|
425 |
"plt.xlabel('Relative Importance')\n", |
|
|
426 |
"\n", |
|
|
427 |
"plt.savefig(\"RF Features importance.jpg\", dpi = 400, facecolor='w', edgecolor='w',\n", |
|
|
428 |
" orientation='landscape', papertype=None, format=None,\n", |
|
|
429 |
" transparent=False, bbox_inches='tight', pad_inches=0.3,\n", |
|
|
430 |
" frameon=None)\n", |
|
|
431 |
"\n", |
|
|
432 |
"plt.show()" |
|
|
433 |
] |
|
|
434 |
} |
|
|
435 |
], |
|
|
436 |
"metadata": { |
|
|
437 |
"kernelspec": { |
|
|
438 |
"display_name": "Python 3", |
|
|
439 |
"language": "python", |
|
|
440 |
"name": "python3" |
|
|
441 |
}, |
|
|
442 |
"language_info": { |
|
|
443 |
"codemirror_mode": { |
|
|
444 |
"name": "ipython", |
|
|
445 |
"version": 3 |
|
|
446 |
}, |
|
|
447 |
"file_extension": ".py", |
|
|
448 |
"mimetype": "text/x-python", |
|
|
449 |
"name": "python", |
|
|
450 |
"nbconvert_exporter": "python", |
|
|
451 |
"pygments_lexer": "ipython3", |
|
|
452 |
"version": "3.7.4" |
|
|
453 |
} |
|
|
454 |
}, |
|
|
455 |
"nbformat": 4, |
|
|
456 |
"nbformat_minor": 2 |
|
|
457 |
} |