--- a +++ b/Logistic Regression.ipynb @@ -0,0 +1,341 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h1 align=\"center\">Machine learning-based prediction of early recurrence in glioblastoma patients: a glance towards precision medicine <br><br>[Logistic Regression]</h1>" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [1] Library" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# OS library\n", + "import os\n", + "import sys\n", + "import argparse\n", + "\n", + "# Analysis\n", + "import numpy as np\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Sklearn\n", + "from boruta import BorutaPy\n", + "from sklearn.preprocessing import LabelEncoder\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import confusion_matrix, f1_score, recall_score, classification_report, accuracy_score, auc, roc_curve\n", + "from sklearn.model_selection import GridSearchCV\n", + "from sklearn.linear_model import LogisticRegression\n", + "\n", + "import scikitplot as skplt\n", + "from imblearn.over_sampling import RandomOverSampler, SMOTENC, SMOTE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [2] Data Preprocessing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h4>[-] Load the database</h4>" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "file = os.path.join(sys.path[0], \"db.xlsx\")\n", + "db = pd.read_excel(file)\n", + "\n", + "print(\"N° of patients: {}\".format(len(db)))\n", + "print(\"N° of columns: {}\".format(db.shape[1]))\n", + "db.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h4>[-] Drop unwanted columns + create <i>'results'</i> column</h4>" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = db.drop(['Name_Surname', '...'], axis = 'columns')\n", + "\n", + "print(\"Effective features to consider: {} \".format(len(df.columns)-1))\n", + "print(\"Creating 'result' column...\")\n", + "\n", + "# 0 = No relapse\n", + "df.loc[df['PFS'] > 6, 'result'] = 0\n", + "\n", + "# 1 = Early relapse (within 6 months)\n", + "df.loc[df['PFS'] <= 6, 'result'] = 1\n", + "\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h4>[-] Label encoding of the categorical variables </h4>" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['sex'] =df['sex'].astype('category')\n", + "df['ceus'] =df['ceus'].astype('category')\n", + "df['ala'] =df['ala'].astype('category')\n", + "\n", + "#df['Ki67'] =df['Ki67'].astype(int)\n", + "df['MGMT'] =df['MGMT'].astype('category')\n", + "df['IDH1'] =df['IDH1'].astype('category')\n", + "\n", + "df['side'] =df['side'].astype('category')\n", + "df['ependima'] =df['ependima'].astype('category')\n", + "df['cc'] =df['cc'].astype('category')\n", + "df['necrotico_cistico'] =df['necrotico_cistico'].astype('category')\n", + "df['shift'] =df['shift'].astype('category')\n", + "\n", + "## VARIABLE TO ONE-HOT-ENCODE\n", + "df['localization'] =df['localization'].astype(int)\n", + "df['clinica_esordio'] =df['clinica_esordio'].astype(int)\n", + "df['immediate_p_o'] =df['immediate_p_o'].astype(int)\n", + "df['onco_Protocol'] =df['onco_Protocol'].astype(int)\n", + "\n", + "df['result'] =df['result'].astype(int)\n", + "\n", + "dummy_v = ['localization', 'clinica_esordio', 'onco_Protocol', 'immediate_p_o']\n", + "\n", + "df = pd.get_dummies(df, columns = dummy_v, prefix = dummy_v)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [3] Prediction Models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h4> [-] Training and testing set splitting</h4>" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "target = df['result']\n", + "inputs = df.drop(['result', 'PFS'], axis = 'columns')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Select columns (variable) at a univariate analysis ad a p-value lower than 0.05" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "cols = ['age', 'EOR', \n", + " 'onco_Protocol_0','onco_Protocol_1', 'onco_Protocol_2', \n", + " 'onco_Protocol_3', 'onco_Protocol_5', 'MGMT', \n", + " 'IDH1', 'edema volume', 'residual_tumor', \n", + " 'KPS_preop', 'KPS_postop']\n", + "\n", + "\n", + "x_train, x_test, y_train, y_test = train_test_split(inputs[cols],target,test_size=0.20, random_state=42)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h4> [-] SMOTE-NC</h4>" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "os = SMOTENC(categorical_features=[2,3,4,5,6,7,8], k_neighbors=4, random_state= 42)\n", + "smote_x,smote_y= os.fit_sample(x_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h4> [-] Grid Search Hyperparameter tuning</h4>" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "random_grid = [{'penalty' : ['l1', 'l2', 'elasticnet', 'none'],\n", + " 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]}]\n", + "\n", + "# First create the base model to tune\n", + "lg = LogisticRegression(random_state=42)\n", + "\n", + "# Random search of parameters, using 5 fold cross validation, different combinations, and use all available cores\n", + "lg_random = GridSearchCV(estimator = lg, param_grid=random_grid,\n", + " cv = 5)\n", + "# Fit the random search model\n", + "lg_random.fit(x_train, y_train)\n", + "lg_random.best_params_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h4> [-] Logistic Regression</h4>" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "log_pfs = LogisticRegression(random_state=42, penalty='l2', C=10)\n", + "log_pfs.fit(smote_x, smote_y)\n", + "\n", + "score_log = log_pfs.score(x_test, y_test)\n", + "print(\"### TESTING ###\")\n", + "print(\"Logistic Regression's accuracy: \", round(score_log*100,2), \"% \\n\")\n", + "\n", + "y_pred = log_pfs.predict(x_test)\n", + "y_proba = log_pfs.predict_proba(x_test)\n", + "cm_log = confusion_matrix(y_test, y_pred)\n", + "print(cm_log, \"\\n\")\n", + "\n", + "false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)\n", + "roc_auc = auc(false_positive_rate, true_positive_rate)\n", + "\n", + "\n", + "print('1. The F-1 Score of the model {} \\n '.format(round(f1_score(y_test, y_pred, average = 'macro'), 2)))\n", + "print('2. The Recall Score of the model {} \\n '.format(round(recall_score(y_test, y_pred, average = 'macro'), 2)))\n", + "print('3. Classification report \\n {}'.format(classification_report(y_test, y_pred)))\n", + "print('3. AUC: \\n {} \\n'.format(roc_auc))\n", + "\n", + "tn, fp, fn, tp = cm_log.ravel()\n", + "\n", + "# Sensitivity, hit rate, Recall, or true positive rate\n", + "tpr = tp/(tp+fn)\n", + "print(\"Sensitivity (TPR): {}\".format(tpr))\n", + "\n", + "# Specificity or true negative rate\n", + "tnr = tn/(tn+fp)\n", + "print(\"Specificity (TNR): {}\".format(tnr))\n", + "\n", + "# Precision or positive predictive value\n", + "ppv = tp/(tp+fp)\n", + "print(\"Precision (PPV): {}\".format(ppv))\n", + "\n", + "# Negative predictive value\n", + "npv = tn/(tn+fn)\n", + "print(\"Negative Predictive Value (NPV): {}\".format(npv))\n", + "\n", + "# False positive rate\n", + "fpr = fp / (fp + tn)\n", + "print(\"False Positive Rate (FPV): {}\".format(fpr))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}