Switch to unified view

a b/.ipynb_checkpoints/Null-classifier-checkpoint.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "markdown",
5
   "metadata": {},
6
   "source": [
7
    "<h1 align=\"center\">Machine learning-based prediction of early recurrence in glioblastoma patients: a glance towards precision medicine <br><br>[Null-classifier]</h1>"
8
   ]
9
  },
10
  {
11
   "cell_type": "markdown",
12
   "metadata": {},
13
   "source": [
14
    "<h2>[1] Library</h2>"
15
   ]
16
  },
17
  {
18
   "cell_type": "code",
19
   "execution_count": 1,
20
   "metadata": {
21
    "collapsed": true
22
   },
23
   "outputs": [
24
    {
25
     "name": "stderr",
26
     "output_type": "stream",
27
     "text": [
28
      "/Users/valerio_mc/opt/anaconda3/lib/python3.7/site-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.neighbors.base module is  deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.neighbors. Anything that cannot be imported from sklearn.neighbors is now part of the private API.\n",
29
      "  warnings.warn(message, FutureWarning)\n",
30
      "/Users/valerio_mc/opt/anaconda3/lib/python3.7/site-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.ensemble.bagging module is  deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.ensemble. Anything that cannot be imported from sklearn.ensemble is now part of the private API.\n",
31
      "  warnings.warn(message, FutureWarning)\n",
32
      "/Users/valerio_mc/opt/anaconda3/lib/python3.7/site-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.ensemble.base module is  deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.ensemble. Anything that cannot be imported from sklearn.ensemble is now part of the private API.\n",
33
      "  warnings.warn(message, FutureWarning)\n",
34
      "/Users/valerio_mc/opt/anaconda3/lib/python3.7/site-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.ensemble.forest module is  deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.ensemble. Anything that cannot be imported from sklearn.ensemble is now part of the private API.\n",
35
      "  warnings.warn(message, FutureWarning)\n",
36
      "/Users/valerio_mc/opt/anaconda3/lib/python3.7/site-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.utils.testing module is  deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.utils. Anything that cannot be imported from sklearn.utils is now part of the private API.\n",
37
      "  warnings.warn(message, FutureWarning)\n",
38
      "/Users/valerio_mc/opt/anaconda3/lib/python3.7/site-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.metrics.classification module is  deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.metrics. Anything that cannot be imported from sklearn.metrics is now part of the private API.\n",
39
      "  warnings.warn(message, FutureWarning)\n"
40
     ]
41
    }
42
   ],
43
   "source": [
44
    "# OS library\n",
45
    "import os\n",
46
    "import sys\n",
47
    "import argparse\n",
48
    "import itertools\n",
49
    "import random\n",
50
    "\n",
51
    "# Analysis\n",
52
    "import numpy as np\n",
53
    "import pandas as pd\n",
54
    "import seaborn as sns\n",
55
    "import matplotlib.pyplot as plt\n",
56
    "\n",
57
    "# Sklearn\n",
58
    "from boruta import BorutaPy\n",
59
    "from sklearn.preprocessing import LabelEncoder\n",
60
    "from sklearn.model_selection import train_test_split\n",
61
    "from sklearn.ensemble import RandomForestClassifier\n",
62
    "from sklearn.metrics import confusion_matrix, f1_score, recall_score, classification_report, accuracy_score, auc, roc_curve\n",
63
    "from sklearn.model_selection import RandomizedSearchCV\n",
64
    "from sklearn.dummy import DummyClassifier\n",
65
    "\n",
66
    "import scikitplot as skplt\n",
67
    "from imblearn.over_sampling import RandomOverSampler, SMOTENC, SMOTE"
68
   ]
69
  },
70
  {
71
   "cell_type": "markdown",
72
   "metadata": {},
73
   "source": [
74
    "<h2>[2] Exploratory data analysis and Data Preprocessing</h2>"
75
   ]
76
  },
77
  {
78
   "cell_type": "markdown",
79
   "metadata": {},
80
   "source": [
81
    "<h4>[-] Load the database</h4>"
82
   ]
83
  },
84
  {
85
   "cell_type": "code",
86
   "execution_count": null,
87
   "metadata": {},
88
   "outputs": [],
89
   "source": [
90
    "file = os.path.join(sys.path[0], \"db.xlsx\")\n",
91
    "db = pd.read_excel(file)\n",
92
    "\n",
93
    "print(\"N° of patients: {}\".format(len(db)))\n",
94
    "print(\"N° of columns: {}\".format(db.shape[1]))\n",
95
    "db.head()"
96
   ]
97
  },
98
  {
99
   "cell_type": "markdown",
100
   "metadata": {},
101
   "source": [
102
    "<h4>[-] Drop unwanted columns + create <i>'results'</i> column</h4>"
103
   ]
104
  },
105
  {
106
   "cell_type": "code",
107
   "execution_count": null,
108
   "metadata": {},
109
   "outputs": [],
110
   "source": [
111
    "df = db.drop(['Name_Surname','...'], axis = 'columns')\n",
112
    "\n",
113
    "print(\"Effective features to consider: {} \".format(len(df.columns)-1))\n",
114
    "print(\"Creating 'result' column...\")\n",
115
    "\n",
116
    "# 0 = No relapse\n",
117
    "df.loc[df['PFS'] > 6, 'result'] = 0\n",
118
    "\n",
119
    "# 1 = Early relapse (within 6 months)\n",
120
    "df.loc[df['PFS'] <= 6, 'result'] = 1\n",
121
    "\n",
122
    "df.head()"
123
   ]
124
  },
125
  {
126
   "cell_type": "markdown",
127
   "metadata": {},
128
   "source": [
129
    "<h4>[-] Check for class imbalance in the <i>'results'</i> column </h4>"
130
   ]
131
  },
132
  {
133
   "cell_type": "code",
134
   "execution_count": null,
135
   "metadata": {},
136
   "outputs": [],
137
   "source": [
138
    "print(\"PFS Overview\")\n",
139
    "print(df.result.value_counts())\n",
140
    "\n",
141
    "df.result.value_counts().plot(kind='pie', autopct='%1.0f%%', colors=['skyblue', 'orange'], explode=(0.05, 0.05))"
142
   ]
143
  },
144
  {
145
   "cell_type": "markdown",
146
   "metadata": {},
147
   "source": [
148
    "<h4>[-] Label encoding of the categorical variables </h4>"
149
   ]
150
  },
151
  {
152
   "cell_type": "code",
153
   "execution_count": null,
154
   "metadata": {},
155
   "outputs": [],
156
   "source": [
157
    "df['sex'] =df['sex'].astype('category')\n",
158
    "df['ceus'] =df['ceus'].astype('category')\n",
159
    "df['ala'] =df['ala'].astype('category')\n",
160
    "\n",
161
    "#df['Ki67'] =df['Ki67'].astype(int)\n",
162
    "df['MGMT'] =df['MGMT'].astype('category')\n",
163
    "df['IDH1'] =df['IDH1'].astype('category')\n",
164
    "\n",
165
    "df['side'] =df['side'].astype('category')\n",
166
    "df['ependima'] =df['ependima'].astype('category')\n",
167
    "df['cc'] =df['cc'].astype('category')\n",
168
    "df['necrotico_cistico'] =df['necrotico_cistico'].astype('category')\n",
169
    "df['shift'] =df['shift'].astype('category')\n",
170
    "\n",
171
    "## VARIABLE TO ONE-HOT-ENCODE\n",
172
    "df['localization'] =df['localization'].astype(int)\n",
173
    "df['clinica_esordio'] =df['clinica_esordio'].astype(int)\n",
174
    "df['immediate_p_o'] =df['immediate_p_o'].astype(int)\n",
175
    "df['onco_Protocol'] =df['onco_Protocol'].astype(int)\n",
176
    "\n",
177
    "df['result'] =df['result'].astype(int)\n",
178
    "\n",
179
    "dummy_v = ['localization', 'clinica_esordio', 'onco_Protocol', 'immediate_p_o']\n",
180
    "\n",
181
    "df = pd.get_dummies(df, columns = dummy_v, prefix = dummy_v)"
182
   ]
183
  },
184
  {
185
   "cell_type": "markdown",
186
   "metadata": {},
187
   "source": [
188
    "<h2>[3] Prediction Models</h2>"
189
   ]
190
  },
191
  {
192
   "cell_type": "markdown",
193
   "metadata": {},
194
   "source": [
195
    "<h4> [-] Training and testing set splitting</h4>"
196
   ]
197
  },
198
  {
199
   "cell_type": "code",
200
   "execution_count": 5,
201
   "metadata": {
202
    "collapsed": true
203
   },
204
   "outputs": [
205
    {
206
     "ename": "NameError",
207
     "evalue": "name 'df' is not defined",
208
     "output_type": "error",
209
     "traceback": [
210
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
211
      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
212
      "\u001b[0;32m<ipython-input-5-48cdcc32916c>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtarget\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'result'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0minputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'result'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'PFS'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'columns'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
213
      "\u001b[0;31mNameError\u001b[0m: name 'df' is not defined"
214
     ]
215
    }
216
   ],
217
   "source": [
218
    "target = df['result']\n",
219
    "inputs = df.drop(['result', 'PFS'], axis = 'columns')\n",
220
    "x_train, x_test, y_train, y_test = train_test_split(inputs['...'],target,test_size=0.20, random_state=10)"
221
   ]
222
  },
223
  {
224
   "cell_type": "markdown",
225
   "metadata": {},
226
   "source": [
227
    "<h4> [-] Dummy Training </h4>"
228
   ]
229
  },
230
  {
231
   "cell_type": "code",
232
   "execution_count": null,
233
   "metadata": {},
234
   "outputs": [],
235
   "source": [
236
    "dummy_train = DummyClassifier(strategy=\"uniform\", random_state = 42)\n",
237
    "dummy_train.fit(x_train, y_train)\n",
238
    "\n",
239
    "score_dummy_train = dummy_train.score(x_train, y_train)\n",
240
    "print(\"Dummy Train accuracy ***TRAIN***: \", round(score_dummy_train*100,2), \"% \\n\")\n",
241
    "\n",
242
    "y_dummy_train_predicted = dummy_train.predict(x_train)\n",
243
    "y_dummy_train_proba = dummy_train.predict_proba(x_train)\n",
244
    "\n",
245
    "cm_dummy_train = confusion_matrix(y_train, y_dummy_train_predicted)\n",
246
    "print(cm_dummy_train, \"\\n\")\n",
247
    "\n",
248
    "false_positive_rate, true_positive_rate, thresholds = roc_curve(y_train, y_dummy_train_predicted)\n",
249
    "roc_auc = auc(false_positive_rate, true_positive_rate)\n",
250
    "\n",
251
    "\n",
252
    "print('1. The F-1 Score of the model {} \\n '.format(round(f1_score(y_train, y_dummy_train_predicted, average = 'macro'), 2)))\n",
253
    "print('2. The Recall Score of the model {} \\n '.format(round(recall_score(y_train, y_dummy_train_predicted, average = 'macro'), 2)))\n",
254
    "print('3. Classification report \\n {} \\n'.format(classification_report(y_train, y_dummy_train_predicted)))\n",
255
    "print('3. AUC: \\n {} \\n'.format(roc_auc))\n",
256
    "\n",
257
    "tn, fp, fn, tp = cm_dummy_train.ravel()\n",
258
    "\n",
259
    "# Sensitivity, hit rate, Recall, or true positive rate\n",
260
    "tpr = tp/(tp+fn)\n",
261
    "print(\"Sensitivity (TPR): {}\".format(tpr))\n",
262
    "\n",
263
    "# Specificity or true negative rate\n",
264
    "tnr = tn/(tn+fp)\n",
265
    "print(\"Specificity (TNR): {}\".format(tnr))\n",
266
    "\n",
267
    "# Precision or positive predictive value\n",
268
    "ppv = tp/(tp+fp)\n",
269
    "print(\"Precision (PPV): {}\".format(ppv))\n",
270
    "\n",
271
    "# Negative predictive value\n",
272
    "npv = tn/(tn+fn)\n",
273
    "print(\"Negative Predictive Value (NPV): {}\".format(npv))\n",
274
    "\n",
275
    "# False positive rate\n",
276
    "fpr = fp / (fp + tn)\n",
277
    "print(\"False Positive Rate (FPV): {}\".format(fpr))\n",
278
    "\n",
279
    "tnr = tn/(tn+fp)\n"
280
   ]
281
  },
282
  {
283
   "cell_type": "markdown",
284
   "metadata": {},
285
   "source": [
286
    "<h4> [-] Dummy Testing </h4>"
287
   ]
288
  },
289
  {
290
   "cell_type": "code",
291
   "execution_count": null,
292
   "metadata": {},
293
   "outputs": [],
294
   "source": [
295
    "dummy_testing = DummyClassifier(strategy=\"uniform\", random_state = 42)\n",
296
    "dummy_testing.fit(x_test, y_test)\n",
297
    "\n",
298
    "score_dummy_testing = dummy_testing.score(x_test, y_test)\n",
299
    "print(\"Dummy Test accuracy ***TEST***: \", round(score_dummy_testing*100,2), \"% \\n\")\n",
300
    "\n",
301
    "y_dummy_testing_predicted = dummy_testing.predict(x_test)\n",
302
    "y_dummy_testing_proba = dummy_testing.predict_proba(x_test)\n",
303
    "\n",
304
    "cm_dummy_testing = confusion_matrix(y_test, y_dummy_testing_predicted)\n",
305
    "print(cm_dummy_testing, \"\\n\")\n",
306
    "\n",
307
    "false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_dummy_testing_predicted)\n",
308
    "roc_auc = auc(false_positive_rate, true_positive_rate)\n",
309
    "\n",
310
    "\n",
311
    "print('1. The F-1 Score of the model {} \\n '.format(round(f1_score(y_test, y_dummy_testing_predicted, average = 'macro'), 2)))\n",
312
    "print('2. The Recall Score of the model {} \\n '.format(round(recall_score(y_test, y_dummy_testing_predicted, average = 'macro'), 2)))\n",
313
    "print('3. Classification report \\n {} \\n'.format(classification_report(y_test, y_dummy_testing_predicted)))\n",
314
    "print('3. AUC: \\n {} \\n'.format(roc_auc))\n",
315
    "\n",
316
    "tn, fp, fn, tp = cm_dummy_train.ravel()\n",
317
    "\n",
318
    "# Sensitivity, hit rate, Recall, or true positive rate\n",
319
    "tpr = tp/(tp+fn)\n",
320
    "print(\"Sensitivity (TPR): {}\".format(tpr))\n",
321
    "\n",
322
    "# Specificity or true negative rate\n",
323
    "tnr = tn/(tn+fp)\n",
324
    "print(\"Specificity (TNR): {}\".format(tnr))\n",
325
    "\n",
326
    "# Precision or positive predictive value\n",
327
    "ppv = tp/(tp+fp)\n",
328
    "print(\"Precision (PPV): {}\".format(ppv))\n",
329
    "\n",
330
    "# Negative predictive value\n",
331
    "npv = tn/(tn+fn)\n",
332
    "print(\"Negative Predictive Value (NPV): {}\".format(npv))\n",
333
    "\n",
334
    "# False positive rate\n",
335
    "fpr = fp / (fp + tn)\n",
336
    "print(\"False Positive Rate (FPV): {}\".format(fpr))\n",
337
    "\n",
338
    "tnr = tn/(tn+fp)"
339
   ]
340
  }
341
 ],
342
 "metadata": {
343
  "kernelspec": {
344
   "display_name": "Python 3",
345
   "language": "python",
346
   "name": "python3"
347
  },
348
  "language_info": {
349
   "codemirror_mode": {
350
    "name": "ipython",
351
    "version": 3
352
   },
353
   "file_extension": ".py",
354
   "mimetype": "text/x-python",
355
   "name": "python",
356
   "nbconvert_exporter": "python",
357
   "pygments_lexer": "ipython3",
358
   "version": "3.7.4"
359
  }
360
 },
361
 "nbformat": 4,
362
 "nbformat_minor": 2
363
}