[1a700d]: / kgwas / kgwas.py

Download this file

273 lines (218 with data), 12.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from copy import deepcopy
from tqdm import tqdm
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
import pandas as pd
import numpy as np
import pickle
import subprocess
import torch
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
from torch_geometric.loader import NeighborLoader
from .utils import print_sys, compute_metrics, save_dict, \
load_dict, load_pretrained, save_model, \
evaluate_minibatch_clean, process_data, \
get_network_weight, generate_viz
from .eval_utils import storey_ribshirani_integrate, get_clumps_gold_label, get_meta_clumps, \
get_mega_clump_query, get_curve, find_closest_x
from .model import HeteroGNN
class KGWAS:
def __init__(self,
data,
weight_bias_track = False,
device = 'cuda',
proj_name = 'KGWAS',
exp_name = 'KGWAS',
seed = 42):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
self.seed = seed
torch.backends.cudnn.enabled = False
use_cuda = torch.cuda.is_available()
self.device = device if use_cuda else "cpu"
self.data = data
self.data_path = data.data_path
if weight_bias_track:
import wandb
wandb.init(project=proj_name, name=exp_name)
self.wandb = wandb
else:
self.wandb = False
self.exp_name = exp_name
def initialize_model(self, gnn_num_layers = 2, gnn_hidden_dim = 128, gnn_backbone = 'GAT', gnn_aggr = 'sum', gat_num_head = 1, no_relu = False):
self.config = {
'gnn_num_layers': gnn_num_layers,
'gnn_hidden_dim': gnn_hidden_dim,
'gnn_backbone': gnn_backbone,
'gnn_aggr': gnn_aggr,
'gat_num_head': gat_num_head
}
self.gnn_num_layers = gnn_num_layers
self.model = HeteroGNN(self.data.data, gnn_hidden_dim, 1,
gnn_num_layers, gnn_backbone, gnn_aggr,
self.data.snp_init_dim_size,
self.data.gene_init_dim_size,
self.data.go_init_dim_size,
gat_num_head,
no_relu = no_relu,
).to(self.device)
def load_pretrained(self, path):
with open(os.path.join(path, 'config.pkl'), 'rb') as f:
config = pickle.load(f)
self.initialize_model(**config)
self.config = config
self.model = load_pretrained(path, self.model)
self.best_model = self.model
self.kgwas_res = pd.read_csv(os.path.join(path, 'pred.csv'), sep = None, engine = 'python')
self.save_name = path.split('/')[-1]
def train(self, batch_size = 512, num_workers = 0, lr = 1e-4,
weight_decay = 5e-4, epoch = 10, save_best_model = True,
save_name = None, data_to_cuda = False):
total_epoch = epoch
if save_name is None:
save_name = self.exp_name
self.save_name = save_name
print_sys('Creating data loader...')
kwargs = {'batch_size': batch_size, 'num_workers': num_workers, 'drop_last': True}
eval_kwargs = {'batch_size': 512, 'num_workers': num_workers, 'drop_last': False}
if data_to_cuda:
self.data.data = self.data.data.to(self.device)
self.train_loader = NeighborLoader(self.data.data, num_neighbors=[-1] * self.gnn_num_layers,
sampler = None,
input_nodes=self.data.train_input_nodes, **kwargs)
self.val_loader = NeighborLoader(self.data.data, num_neighbors=[-1] * self.gnn_num_layers,
input_nodes=self.data.val_input_nodes, **kwargs)
self.test_loader = NeighborLoader(self.data.data, num_neighbors=[-1] * self.gnn_num_layers,
input_nodes=self.data.test_input_nodes, **eval_kwargs)
X_infer = self.data.lr_uni.ID.values
#print_sys('# of to-infer SNPs: ' + str(len(X_infer)))
infer_idx = np.array([self.data.id2idx['SNP'][i] for i in X_infer])
infer_input_nodes = ('SNP', infer_idx)
self.infer_loader = NeighborLoader(self.data.data, num_neighbors=[-1] * self.gnn_num_layers,
input_nodes=infer_input_nodes, **eval_kwargs)
## model training
optimizer = optim.Adam(self.model.parameters(), lr=lr, weight_decay = weight_decay)
loss_fct = F.mse_loss
earlystop_validation_metric = 'pearsonr'
binary_output = False
earlystop_direction = 'ascend'
min_val = -1000
self.best_model = deepcopy(self.model).to(self.device)
print_sys('Start Training...')
for epoch in range(total_epoch):
self.model.train()
for step, batch in enumerate(tqdm(self.train_loader, desc=f"Training Progress Epoch {epoch+1}/{total_epoch}", total=len(self.train_loader))):
optimizer.zero_grad()
if data_to_cuda:
pass
#batch = batch.to(self.device, 'edge_index')
else:
batch = batch.to(self.device)
bs_batch = batch['SNP'].batch_size
out = self.model(batch.x_dict, batch.edge_index_dict, bs_batch)
pred = out.reshape(-1)
y_batch = batch['SNP'].y[:bs_batch]
rs_id = [self.data.idx2id['SNP'][i.item()] for i in batch['SNP']['n_id'][:bs_batch]]
ld_weight = torch.tensor([self.data.rs_id_to_ldsc_weight[i] for i in rs_id]).to(self.device)
loss = torch.mean(ld_weight * (pred - y_batch)**2)
if self.wandb:
self.wandb.log({'training_loss': loss.item()})
loss.backward()
optimizer.step()
if (step % 500 == 0) and (step >= 500):
log = "Epoch {} Step {} Train Loss: {:.4f}"
print_sys(log.format(epoch + 1, step + 1, loss.item()))
val_res = evaluate_minibatch_clean(self.val_loader, self.model, self.device)
val_metrics = compute_metrics(val_res, binary_output, -1, -1, loss_fct)
log = "Epoch {}: Validation MSE: {:.4f} " \
"Validation Pearson: {:.4f}. "
print_sys(log.format(epoch + 1, val_metrics['mse'],
val_metrics['pearsonr']))
if self.wandb:
for i,j in val_metrics.items():
self.wandb.log({'val_' + i: j})
if val_metrics[earlystop_validation_metric] > min_val:
min_val = val_metrics[earlystop_validation_metric]
self.best_model = deepcopy(self.model)
best_epoch = epoch
if save_best_model:
save_model_path = self.data_path + '/model/'
print_sys('Saving models to ' + os.path.join(save_model_path, save_name))
save_model(self.best_model, self.config, os.path.join(save_model_path, save_name))
test_res = evaluate_minibatch_clean(self.test_loader, self.best_model, self.device)
test_metric = compute_metrics(test_res, binary_output, -1, -1, loss_fct)
if self.wandb:
for i,j in test_metric.items():
self.wandb.log({'test_' + i: j})
infer_res = evaluate_minibatch_clean(self.infer_loader, self.best_model, self.device)
self.data.lr_uni['pred'] = infer_res['pred']
lr_uni_to_save = deepcopy(self.data.lr_uni)
self.data.lr_uni['abs_pred'] = np.abs(self.data.lr_uni['pred'])
self.data.lr_uni['SR_P_val'] = storey_ribshirani_integrate(self.data.lr_uni, column = 'abs_pred', num_bins = 500)
self.data.lr_uni['SR'] = -(np.log10(self.data.lr_uni['SR_P_val'].astype(float).values))
lr_uni_to_save['P_weighted'] = self.data.lr_uni['SR_P_val']
## calibration
scale_factor = find_closest_x(lr_uni_to_save)
lr_uni_to_save['KGWAS_P'] = scale_factor * lr_uni_to_save['P_weighted']
lr_uni_to_save['KGWAS_P'] = lr_uni_to_save['KGWAS_P'].clip(lower=0, upper=1)
if not os.path.exists(self.data_path + '/model_pred/'):
os.makedirs(self.data_path + '/model_pred/')
os.makedirs(self.data_path + '/model_pred/new_experiments/')
lr_uni_to_save.to_csv(self.data_path + '/model_pred/new_experiments/' + save_name + '_pred.csv', index = False, sep = '\t')
print('KGWAS prediction and p-values saved to ' + self.data_path + '/model_pred/new_experiments/' + save_name + '_pred.csv')
if save_best_model:
lr_uni_to_save.to_csv(self.data_path + '/model/' + save_name + '/pred.csv', index = False, sep = '\t')
self.kgwas_res = lr_uni_to_save
def run_magma(self, path_to_magma, bfile):
if 'N' in self.kgwas_res.columns:
n_value = self.kgwas_res['N'].values[0]
else:
n_value = input("Please provide the sample size for the GWAS analysis.")
url = "https://dataverse.harvard.edu/api/access/datafile/10731670"
annot_file_path = os.path.join(self.data_path, 'gene_annotation.genes.annot')
# Check if the example file is already downloaded
if not os.path.exists(annot_file_path):
print('Annotation file not found locally. Downloading...')
self.data._download_with_progress(url, annot_file_path)
print('Annotation file downloaded successfully.')
else:
print('Annotation file already exists locally.')
gene_annot = annot_file_path
magma_path = self.data_path + '/model_pred/new_experiments/' + self.save_name + '_magma_format.csv'
self.kgwas_res[['ID', 'KGWAS_P']].rename(columns = {'ID': 'SNP', 'KGWAS_P': 'P'}).to_csv(magma_path, index = False, sep = '\t')
# Construct the MAGMA command
command = [
path_to_magma,
"--bfile", bfile,
"--gene-annot", gene_annot,
"--pval", magma_path, f"N={n_value}",
"--out", self.data_path + '/model_pred/new_experiments/' + self.save_name + '_magma_out'
]
try:
# Run the command with real-time output
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print("Running MAGMA...")
# Stream stdout line by line
for line in process.stdout:
print(line, end="") # Print each line as it's received
# Wait for the process to complete and capture stderr
stderr = process.communicate()[1]
if process.returncode == 0:
print("MAGMA command executed successfully.")
else:
print("MAGMA encountered an error.")
print("Error message:", stderr)
except FileNotFoundError:
print("MAGMA executable not found. Ensure it is in the specified path.")
except Exception as e:
print(f"An unexpected error occurred: {e}")
def get_disease_critical_network(self, variant_threshold = 5e-8,
magma_path = None, magma_threshold = 0.05, program_threshold = 0.05,
K_neighbors = 3, num_cpus = 1):
df_network_weight = get_network_weight(self, self.data)
df_variant_interpretation, disease_critical_network = generate_viz(self, df_network_weight, self.data_path, variant_threshold, magma_path, magma_threshold, program_threshold, K_neighbors, num_cpus)
return df_network_weight, df_variant_interpretation, disease_critical_network