[1a700d]: / kgwas / eval_utils.py

Download this file

596 lines (497 with data), 27.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
import numpy as np
import pandas as pd
import torch
from scipy import interpolate
from .utils import load_dict
import pandas as pd
import numpy as np
from copy import copy
def find_closest_x(df_pred, lower_bound=0, upper_bound=200, tolerance=0.01):
upper = 1e-2
lower = 1e-3
while lower_bound <= upper_bound:
mid = (lower_bound + upper_bound) / 2
#result = len(np.where(df_pred.P_weighted.values * mid < 2e-4)[0]) / len(np.where(df_pred.P.values < 2e-4)[0])
res1 = len(np.where((df_pred.P_weighted.values * mid < upper) & (df_pred.P_weighted.values * mid > lower))[0])
res2 = len(np.where((df_pred.P.values < upper) & (df_pred.P.values > lower))[0])
result = res1/res2
if abs(result - 1) < tolerance:
return mid
elif result > 1:
lower_bound = mid + tolerance
else:
upper_bound = mid - tolerance
return mid
def get_clumps_gold_label(data_path, gold_label_gwas, t_p = 5e-8, no_hla = False, column = 'P', snp2ld_snps = None):
snp2ld_snps_with_hla = load_dict(data_path + 'ld_score/ukb_white_ld_10MB.pkl')
snp2ld_snps_no_hla = load_dict(data_path + 'ld_score/ukb_white_ld_10MB_no_hla.pkl')
if not snp2ld_snps:
if no_hla:
snp2ld_snps = snp2ld_snps_no_hla
else:
snp2ld_snps = snp2ld_snps_with_hla
clumps = []
snps_in_clumps = []
snp_hits = gold_label_gwas[gold_label_gwas[column] < t_p].sort_values(column).SNP.values
for snp in snp_hits:
if snp in snps_in_clumps:
## already in existing clumps => not create a new clump
pass
else:
if snp in snp2ld_snps:
# ld block
clumps.append([snp] + snp2ld_snps[snp])
snps_in_clumps += snp2ld_snps[snp]
snps_in_clumps += [snp]
else:
# no other SNPs tagged
clumps.append([snp])
snps_in_clumps += [snp]
return clumps
def get_meta_clumps(clumps, data_path):
snp2cm = dict(pd.read_csv(data_path + 'misc_data/ukb_white_with_cm.bim', sep = '\t', header = None)[[1, 2]].values)
snp2chr = dict(pd.read_csv(data_path + 'misc_data/ukb_white_with_cm.bim', sep = '\t', header = None)[[1, 0]].values)
idx2clump = {'Clump ' + str(idx): i for idx, i in enumerate(clumps)}
idx2clump_chromosome = {'Clump ' + str(idx): snp2chr[i[0]] for idx, i in enumerate(clumps)}
idx2clump_cm = {'Clump ' + str(idx): snp2cm[i[0]] for idx, i in enumerate(clumps)}
idx2clump_cm_min = {'Clump ' + str(idx): min([snp2cm[x] for x in i]) for idx, i in enumerate(clumps)}
idx2clump_cm_max = {'Clump ' + str(idx): max([snp2cm[x] for x in i]) for idx, i in enumerate(clumps)}
df_clumps = pd.DataFrame([idx2clump_chromosome, idx2clump_cm, idx2clump, idx2clump_cm_min, idx2clump_cm_max]).T.reset_index().rename(columns = {'index': 'Clump idx', 0: 'Chromosome', 1: 'cM', 2: 'Clump rsids', 3: 'cM_min',4: 'cM_max'})
all_mega_clump_across_chr = []
for chrom in df_clumps.Chromosome.unique():
df_clump_chr = df_clumps[df_clumps.Chromosome == chrom]
all_mega_clump = []
cur_mega_clump = []
base_cM = 0
for i,cM_hit,cM_min,cM_max in df_clump_chr.sort_values('cM')[['Clump idx', 'cM', 'cM_min', 'cM_max']].values:
if (cM_min - base_cM) < 0.1:
cur_mega_clump.append(i)
base_cM = cM_max
else:
### this clump is >0.1 cM farther away from the previous clump
all_mega_clump.append(cur_mega_clump)
base_cM = cM_max
cur_mega_clump = [i]
all_mega_clump.append(cur_mega_clump)
if len(all_mega_clump[0]) == 0:
all_mega_clump_across_chr += all_mega_clump[1:]
else:
all_mega_clump_across_chr += all_mega_clump
idx2mega_clump = {'Mega-Clump '+str(idx): i for idx, i in enumerate(all_mega_clump_across_chr)}
def flatten(l):
return [item for sublist in l for item in sublist]
idx2mega_clump_rsid = {'Mega-Clump '+str(idx): flatten([idx2clump[j] for j in i]) for idx, i in enumerate(all_mega_clump_across_chr)}
idx2mega_clump_chrom = {'Mega-Clump '+str(idx): idx2clump_chromosome[i[0]] for idx, i in enumerate(all_mega_clump_across_chr)}
return idx2mega_clump, idx2mega_clump_rsid, idx2mega_clump_chrom
def get_mega_clump_query(data_path, clumps, snp_hits, no_hla = False, snp2ld_snps = None):
snp2ld_snps_with_hla = load_dict(data_path + 'ld_score/ukb_white_ld_10MB.pkl')
snp2ld_snps_no_hla = load_dict(data_path + 'ld_score/ukb_white_ld_10MB_no_hla.pkl')
if not snp2ld_snps:
if no_hla:
snp2ld_snps = snp2ld_snps_no_hla
else:
snp2ld_snps = snp2ld_snps_with_hla
clumps_pred = []
snps_in_clumps_pred = []
K = max(len(clumps) * 3, 100)
for snp in snp_hits:
## top ranked snps
if len(clumps_pred) >= K:
## just going to get the top K clumps where K is set to be very large number -> we don't generate all clumps since as K goes extremely large, they are never prioritized and evaluated.
break
else:
if snp in snps_in_clumps_pred:
## already in previous found clumps, move forward
pass
else:
if snp in snp2ld_snps:
# this snp has ld tagged snps
clumps_pred.append([snp] + snp2ld_snps[snp])
snps_in_clumps_pred += snp2ld_snps[snp]
snps_in_clumps_pred += [snp]
else:
# this snp does not have ld tagged snps, at least in UKB
clumps_pred.append([snp])
snps_in_clumps_pred += [snp]
idx2mega_clump_pred, idx2mega_clump_rsid_pred, idx2mega_clump_chrom_pred = get_meta_clumps(clumps_pred, data_path)
return idx2mega_clump_pred, idx2mega_clump_rsid_pred, idx2mega_clump_chrom_pred
def get_curve(mega_clump_pred, mega_clump_gold):
recall_k = {}
precision_k = {}
found_clump_idx = []
clump_idx_record = {}
pred_clump_has_hit_count = 0
for k, query_clump in enumerate(mega_clump_pred):
## go through the predicted top ranked clumps one by one
k += 1
does_this_clump_overlap_with_any_true_clumps = False
## this is used to calculate precision, to see if this clump overlaps with any of the gold clumps
for clump_idx, clump in enumerate(mega_clump_gold):
## overlaps with this gold clump
if len(np.intersect1d(query_clump, clump)) > 0:
if clump_idx not in found_clump_idx:
## if the clump is never found before, flag it
found_clump_idx.append(clump_idx)
does_this_clump_overlap_with_any_true_clumps = True
clump_idx_record[k] = copy(found_clump_idx)
if does_this_clump_overlap_with_any_true_clumps:
pred_clump_has_hit_count += 1
recall_k[k] = len(found_clump_idx)/len(mega_clump_gold)
precision_k[k] = pred_clump_has_hit_count/k
#sns.scatterplot([recall_k[k+1] for k in range(len(mega_clump_pred))], [precision_k[k+1] for k in range(len(mega_clump_pred))], s = 1)
return recall_k, precision_k, clump_idx_record
def get_prec_recall(pred_hits, gold_hits):
recall = len(np.intersect1d(pred_hits, gold_hits))/len(gold_hits)
if len(pred_hits) != 0:
precision = len(np.intersect1d(pred_hits, gold_hits))/len(pred_hits)
else:
precision = 0
return {'recall': recall,
'precision': precision}
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return array[idx]
def get_cluster_from_gwas(df, cluster_distance_threshold = 500000, \
threshold_extend = False, cluster_compare_threshold = None, \
verbose = True):
cluster_chr_pos = {}
cluster_chr_rs = {}
for chr_num in df['#CHROM'].unique():
df_hits_chr = df[df['#CHROM'] == chr_num]
df_hits_chr = df_hits_chr.sort_values('POS')
pos = df_hits_chr.POS.values
rs = df_hits_chr.ID.values
cluster_set = []
cluster_set_rs = []
cur_pos = pos[0]
cur_rs = rs[0]
cur_set = [cur_pos]
cur_set_rs = [rs[0]]
for idx, next_pos in enumerate(pos[1:]):
if next_pos - cur_pos < cluster_distance_threshold:
cur_set.append(next_pos)
cur_set_rs.append(rs[idx + 1])
if threshold_extend:
cur_pos = next_pos
else:
cluster_set.append(cur_set)
cluster_set_rs.append(cur_set_rs)
cur_pos = next_pos
cur_set = [cur_pos]
cur_set_rs = [rs[idx + 1]]
cluster_set.append(cur_set)
cluster_set_rs.append(cur_set_rs)
cluster_chr_pos[chr_num] = cluster_set
cluster_chr_rs[chr_num] = cluster_set_rs
cluster_chr_pos_flatten = {}
cluster_chr_cluster_idx_flatten = {}
cluster_chr_cluster_pos2idx_flatten = {}
for chr_num, cluster_list in cluster_chr_pos.items():
pos_flatten = []
idx_flatten = []
for idx, cluster in enumerate(cluster_list):
pos_flatten = pos_flatten + cluster
idx_flatten = idx_flatten + [idx] * len(cluster)
cluster_chr_pos_flatten[chr_num] = pos_flatten
cluster_chr_cluster_idx_flatten[chr_num] = idx_flatten
cluster_chr_cluster_pos2idx_flatten[chr_num] = dict(zip(pos_flatten, idx_flatten))
if verbose:
print('Number of clusters: ' + str(sum([len(j) for j in cluster_chr_pos.values()])))
cluster_chr_range = {}
for i,j in cluster_chr_pos.items():
cluster_chr_range[i] = [(min(x) - cluster_compare_threshold, max(x) + cluster_compare_threshold) for x in j]
return cluster_chr_pos, cluster_chr_rs, cluster_chr_pos_flatten, \
cluster_chr_cluster_idx_flatten, cluster_chr_cluster_pos2idx_flatten, cluster_chr_range
def get_cluster_hits_from_pred(pred_hits, threshold, lr_uni, cluster_chr_pos_flatten, cluster_chr_cluster_pos2idx_flatten):
df_hits = lr_uni[lr_uni.ID.isin(pred_hits)]
df_hits['closest_cluster'] = df_hits.apply(lambda x: find_nearest(cluster_chr_pos_flatten[x['#CHROM']], x.POS), axis = 1)
df_hits['distance2cluster'] = df_hits.apply(lambda x: abs(x.closest_cluster - x.POS), axis = 1)
df_hits['include_as_cluster'] = df_hits.apply(lambda x: x.distance2cluster < threshold, axis = 1)
df_hits['cluster_id'] = df_hits.apply(lambda x: str(x['#CHROM']) + '_' + str(cluster_chr_cluster_pos2idx_flatten[x['#CHROM']][x['closest_cluster']]), axis = 1)
cluster2count = dict(df_hits[df_hits.include_as_cluster].cluster_id.value_counts())
num_non_hits = len(df_hits[~df_hits.include_as_cluster])
novel_rs_id = df_hits[~df_hits.include_as_cluster].ID.values
print('Number of predicted hits: ' + str(len(pred_hits)))
print('Number of predicted hits not in the existing clusters: ' + str(len(novel_rs_id)))
print('Number of cluster hits: ' + str(len(cluster2count)))
return cluster2count, num_non_hits, df_hits, novel_rs_id
def plot_cluster_range(chr_num, gnn_cluster_chr_range, cluster_chr_range, \
gold_cluster_chr_range, findor_cluster_chr_range, x_start = None, x_end = None, \
base_gwas_name = 'FastGWA', gold_ref_name = 'GWAS Catalog'):
fig = plt.figure(figsize=(14, 3)) # Set the figure size
ax = fig.add_subplot(111)
if chr_num not in cluster_chr_range:
cluster_chr_range[chr_num] = {}
if chr_num not in gnn_cluster_chr_range:
gnn_cluster_chr_range[chr_num] = {}
if chr_num not in gold_cluster_chr_range:
gold_cluster_chr_range[chr_num] = {}
if chr_num not in findor_cluster_chr_range:
findor_cluster_chr_range[chr_num] = {}
for i in findor_cluster_chr_range[chr_num]:
plt.plot(i, ['FINDOR', 'FINDOR'], '*-')
for i in gnn_cluster_chr_range[chr_num]:
plt.plot(i, ['GNN', 'GNN'], 's-')
for i in cluster_chr_range[chr_num]:
plt.plot(i, [base_gwas_name, base_gwas_name], '^-')
for i in gold_cluster_chr_range[chr_num]:
plt.plot(i, [gold_ref_name, gold_ref_name], 'o-')
plt.xlabel('Position Index at Chromosome ' + str(chr_num))
if x_start is not None:
ax.set_xlim([x_start,x_end])
plt.show()
def get_pr_curve(cluster_distance_threshold, gold_label_gwas_hits, method_hit_gwas, low_data_gwas_hits, \
cluster_compare_threshold = None, method_name = 'gnn'):
if cluster_compare_threshold is None:
cluster_compare_threshold = int(cluster_distance_threshold/2)
gold_cluster_chr_pos, gold_cluster_chr_rs, \
gold_cluster_chr_pos_flatten, gold_cluster_chr_cluster_idx_flatten, \
gold_cluster_chr_cluster_pos2idx_flatten, gold_cluster_chr_range = get_cluster_from_gwas(gold_label_gwas_hits, \
cluster_distance_threshold, \
threshold_extend = threshold_extend, \
cluster_compare_threshold = cluster_compare_threshold, \
verbose = False)
cluster_chr_pos, cluster_chr_rs, \
cluster_chr_pos_flatten, cluster_chr_cluster_idx_flatten, \
cluster_chr_cluster_pos2idx_flatten, cluster_chr_range = get_cluster_from_gwas(low_data_gwas_hits, \
cluster_distance_threshold, \
threshold_extend = threshold_extend, \
cluster_compare_threshold = cluster_compare_threshold, \
verbose = False)
gnn_cluster_chr_pos, gnn_cluster_chr_rs, \
gnn_cluster_chr_pos_flatten, gnn_cluster_chr_cluster_idx_flatten, \
gnn_cluster_chr_cluster_pos2idx_flatten, gnn_cluster_chr_range = get_cluster_from_gwas(method_hit_gwas, \
cluster_distance_threshold, \
threshold_extend = threshold_extend, \
cluster_compare_threshold = cluster_compare_threshold, \
verbose = False)
total = sum([len(j) for i,j in gold_cluster_chr_range.items()])
#plink_set_overlap = sum([len(j) for j in find_overlap_clusters(cluster_chr_range, gold_cluster_chr_range).values()])
plink_set_total = sum([len(j) for i,j in cluster_chr_range.items()])
plink_set_overlap_ref = 0
plink_set_overlap_query = 0
for j in find_overlap_clusters(cluster_chr_range, gold_cluster_chr_range).values():
plink_set_overlap_ref += len(np.unique([set(i[1]) for i in j]))
plink_set_overlap_query += len(np.unique([set(i[0]) for i in j]))
#gnn_set_overlap = sum([len(j) for j in find_overlap_clusters(gnn_cluster_chr_range, gold_cluster_chr_range).values()])
gnn_set_total = sum([len(j) for i,j in gnn_cluster_chr_range.items()])
gnn_set_overlap_ref = 0
gnn_set_overlap_query = 0
for j in find_overlap_clusters(gnn_cluster_chr_range, gold_cluster_chr_range).values():
gnn_set_overlap_ref += len(np.unique([set(i[1]) for i in j]))
gnn_set_overlap_query += len(np.unique([set(i[0]) for i in j]))
'''
low_data_gold_hits = low_data_gwas[low_data_gwas.ID.isin(gold_label_gwas_hits.ID.values)]
low_data_gold_hits['cluster_id'] = low_data_gold_hits.apply(lambda x: str(x['#CHROM']) + '_' + \
str(gold_cluster_chr_cluster_pos2idx_flatten[x['#CHROM']][x.POS]), axis = 1)
cluster2min_p = dict(low_data_gold_hits.groupby('cluster_id').P.min())
flat_clusters = [i for i,j in cluster2min_p.items() if j > 1e-3]
gold_label_gwas_hits['closest_cluster'] = gold_label_gwas_hits.apply(lambda x: find_nearest(gold_cluster_chr_pos_flatten[x['#CHROM']], x.POS), axis = 1)
gold_label_gwas_hits['distance2cluster'] = gold_label_gwas_hits.apply(lambda x: abs(x.closest_cluster - x.POS), axis = 1)
gold_label_gwas_hits['cluster_id'] = gold_label_gwas_hits.apply(lambda x: str(x['#CHROM']) + '_' + str(gold_cluster_chr_cluster_pos2idx_flatten[x['#CHROM']][x['closest_cluster']]), axis = 1)
pos_pred = np.unique(low_data_gwas_hits.ID.values.tolist() + pred_hits.tolist())
flat_cluster_range = {}
for i in flat_clusters:
chr_num = int(i.split('_')[0])
cluster_idx = int(i.split('_')[1])
if chr_num in flat_cluster_range:
flat_cluster_range[chr_num].append(gold_cluster_chr_range[chr_num][cluster_idx])
else:
flat_cluster_range[chr_num] = [gold_cluster_chr_range[chr_num][cluster_idx]]
flat_cluster_recalled = sum([len(j) for j in find_overlap_clusters(gnn_cluster_chr_range, flat_cluster_range).values()])
flat_cluster_recalled_plink = sum([len(j) for j in find_overlap_clusters(cluster_chr_range, flat_cluster_range).values()])
'''
if gnn_set_total == 0:
gnn_set_precision = -1
else:
gnn_set_precision = gnn_set_overlap_query/gnn_set_total
if plink_set_total == 0:
plink_precision = -1
else:
plink_precision = plink_set_overlap_query/plink_set_total
return {'plink_precision':plink_precision,
'plink_recall': plink_set_overlap_ref/total,
method_name + '_precision': gnn_set_precision,
method_name + '_recall': gnn_set_overlap_ref/total,
'plink_set_overlap_ref': plink_set_overlap_ref,
'plink_set_overlap_query': plink_set_overlap_query,
'plink_set_total': plink_set_total,
method_name + '_set_overlap_ref': gnn_set_overlap_ref,
method_name + '_set_overlap_query': gnn_set_overlap_query,
method_name + '_set_total': gnn_set_total,
'total_set': total
#'gnn_flat_cluster_recall': flat_cluster_recalled/len(flat_clusters),
#'plink_flat_cluster_recall': flat_cluster_recalled_plink/len(flat_clusters)
}
from tqdm import tqdm
def find_overlap_clusters(query_cluster2range, gold_cluster2range):
set_found_cluster_all = {}
for chr_num, eval_cluster in query_cluster2range.items():
if chr_num in gold_cluster2range:
gold_cluster = gold_cluster2range[chr_num]
set_found_cluster = []
for a in eval_cluster:
for b in gold_cluster:
if (a[0] <= b[1]) and (b[0] <= a[1]):
set_found_cluster.append((a, b))
break
set_found_cluster_all[chr_num] = set_found_cluster
return set_found_cluster_all
def find_non_overlap_clusters(query_cluster2range, gold_cluster2range):
set_not_found_cluster_all = {}
for chr_num, eval_cluster in query_cluster2range.items():
gold_cluster = gold_cluster2range[chr_num]
set_not_found_cluster = []
for a in eval_cluster:
set_found_cluster = []
for b in gold_cluster:
if (a[0] <= b[1]) and (b[0] <= a[1]):
set_found_cluster.append((a, b))
break
if len(set_found_cluster) == 0:
set_not_found_cluster.append(a)
set_not_found_cluster_all[chr_num] = set_not_found_cluster
return set_not_found_cluster_all
### eval support functions
def quantileNormalize(df_input):
df = df_input.copy()
#compute rank
dic = {}
for col in df:
dic.update({col : sorted(df[col])})
sorted_df = pd.DataFrame(dic)
rank = sorted_df.mean(axis = 1).tolist()
#sort
for col in df:
t = np.searchsorted(np.sort(df[col]), df[col])
df[col] = [rank[i] for i in t]
return df
def get_cluster_count(method_hit_gwas, cluster_distance_threshold, cluster_compare_threshold, threshold_extend, gold_cluster_chr_range):
gnn_cluster_chr_pos, gnn_cluster_chr_rs, \
gnn_cluster_chr_pos_flatten, gnn_cluster_chr_cluster_idx_flatten, \
gnn_cluster_chr_cluster_pos2idx_flatten, gnn_cluster_chr_range = get_cluster_from_gwas(method_hit_gwas, \
cluster_distance_threshold, \
threshold_extend = threshold_extend, \
cluster_compare_threshold = cluster_compare_threshold, \
verbose = False)
total = sum([len(j) for i,j in gold_cluster_chr_range.items()])
gnn_set_total = sum([len(j) for i,j in gnn_cluster_chr_range.items()])
gnn_set_overlap_ref = 0
gnn_set_overlap_query = 0
for j in find_overlap_clusters(gnn_cluster_chr_range, gold_cluster_chr_range).values():
gnn_set_overlap_ref += len(np.unique([set(i[1]) for i in j]))
gnn_set_overlap_query += len(np.unique([set(i[0]) for i in j]))
return {'set_overlap_ref': gnn_set_overlap_ref,
'set_overlap_query': gnn_set_overlap_query,
'set_total': gnn_set_total,
'total_set': total
}
## search every 100 until it is larger than k, then search every 10, then search every 1
def get_top_k_clusters(query_rank, top_hits_k_range, cluster_distance_threshold, cluster_compare_threshold, threshold_extend, gold_cluster_chr_range):
snp_k = 0
k_to_cluster = {}
k_to_closest_x = {}
for k in top_hits_k_range:
while True:
out = get_cluster_count(query_rank[:snp_k], cluster_distance_threshold,
cluster_compare_threshold, threshold_extend, gold_cluster_chr_range)
if out['set_total'] < k:
snp_k += 100
else:
snp_k -= 100
while True:
out = get_cluster_count(query_rank[:snp_k], cluster_distance_threshold,
cluster_compare_threshold, threshold_extend, gold_cluster_chr_range)
if out['set_total'] < k:
snp_k += 10
else:
closest_x = snp_k
closest_distance = abs(out['set_total'] - k)
for x in range(snp_k - 10, snp_k):
out = get_cluster_count(query_rank[:x], cluster_distance_threshold,
cluster_compare_threshold, threshold_extend, gold_cluster_chr_range)
if abs(out['set_total'] - k) <= closest_distance:
closest_x = x
closest_distance = abs(out['set_total'] - k)
break
break
k_to_cluster[k] = get_cluster_count(query_rank[:closest_x], cluster_distance_threshold,
cluster_compare_threshold, threshold_extend, gold_cluster_chr_range)
k_to_closest_x[k] = closest_x
return k_to_cluster, k_to_closest_x
def storey_pi_estimator(gwas_data, bin_index):
"""
Estimate pi0/pi1 using Storey and Tibshirani (PNAS 2003) estimator.
Argss
=====
bin_index: array of indices for a particular bin
"""
pvalue = gwas_data.loc[bin_index,'P'] # extract pvalues from specific bin based index
#assert(pvalue.min() >= 0 and pvalue.max() <= 1), "Error: p-values should be between 0 and 1"
total_tests = float(len(pvalue))
pi0 = []
lam = np.arange(0.05, 0.95, 0.05)
counts = np.array([(pvalue > i).sum() for i in np.arange(0.05, 0.95, 0.05)])
for l in range(len(lam)):
pi0.append(counts[l] / (total_tests * (1 - lam[l])))
# fit cubic spline
if not np.all(np.isfinite(pi0)):
print("Not all pi0 is finite!!! filtering to finite indices...")
finite_indices = np.isfinite(pi0)
lam = lam[finite_indices]
pi0 = pi0[finite_indices]
cubic_spline = interpolate.CubicSpline(lam, pi0)
pi0_est = cubic_spline(lam[-1])
if(pi0_est >1): #take care of out of bounds estimate
pi0_est = 1
return pi0_est
def storey_ribshirani_integrate(gwas_data, column = 'pred', num_bins = 100):
num_bins = float(num_bins)
quantiles = np.arange(0, 1 + 1 / (num_bins+1), 1 / num_bins)
predicted_tagged_variance_quantiles = gwas_data[column].quantile(quantiles)
#expand top quantiles to ensure everything is within range
predicted_tagged_variance_quantiles[0] = predicted_tagged_variance_quantiles[0]-1
predicted_tagged_variance_quantiles[1] = predicted_tagged_variance_quantiles[1]+1
predicted_tagged_variance_quantiles = predicted_tagged_variance_quantiles.drop_duplicates()
num_bins = len(predicted_tagged_variance_quantiles)-1
bins = pd.cut(gwas_data[column], predicted_tagged_variance_quantiles, labels=np.arange(num_bins)) #create the lables
gwas_data['bin_number'] = bins
gwas_data['pi0'] = None
if (gwas_data['P'].min() < 0) or (gwas_data['P'].max() > 1):
print("detected p-values < 0 or > 1, please double check. we clipped it to 0-1 for now...")
gwas_data['P'] = gwas_data['P'].clip(lower=0, upper=1)
#print("Estimating pi0 within each bin")
for i in range(num_bins):
bin_index = gwas_data['bin_number']== i # determine index of snps in bin number i
if len(gwas_data[bin_index])>0:
pi0 = storey_pi_estimator(gwas_data, bin_index)
## preventing exploding weights
if pi0 < 1e-5:
pi0 = 1e-5
if pi0 > 1-1e-5:
pi0 = 1-1e-5
gwas_data.loc[bin_index, 'pi0'] = pi0
if any(gwas_data['pi0'] == 1): # if a bin is estimated to be all null, give the smallest non-null weight
one_index = gwas_data['pi0'] == 1
largest_pi0 = gwas_data.loc[~one_index]['pi0'].max()
gwas_data.loc[one_index,'pi0'] = largest_pi0
if any(gwas_data['pi0'] == 0): # if a bin is estimated to be all alternative, give the largest non-null weight
one_index = gwas_data['pi0'] == 0
largest_pi0 = gwas_data.loc[~one_index]['pi0'].min()
gwas_data.loc[one_index,'pi0'] = largest_pi0
#print("Re-weighting SNPs")
weights = (1-gwas_data['pi0'])/(gwas_data['pi0'])
## avoiding exploding p-values
#weights = np.maximum(1, weights.values)
mean_weight = weights.mean()
weights = weights/mean_weight #normalize weights to have mean 1
## avoiding exploding p-values
#weights = np.maximum(1, weights.values)
gwas_data['weights'] = weights
gwas_data['P_weighted'] = gwas_data['P']/weights #reweight SNPs
index = gwas_data['P_weighted'] > 1
#gwas_data.loc[index, 'P_weighted'] = 1
gwas_data.loc[index, 'P_weighted'] = gwas_data['P'][index] ## using original p-value when above 1
gwas_data.loc[gwas_data['P_weighted'].isnull(), 'P_weighted'] = 1
return gwas_data['P_weighted'].values