|
a |
|
b/kgwas/utils.py |
|
|
1 |
import os, sys |
|
|
2 |
from scipy.sparse import csr_matrix |
|
|
3 |
from scipy.sparse.csgraph import connected_components |
|
|
4 |
import pandas as pd |
|
|
5 |
import numpy as np |
|
|
6 |
import pickle |
|
|
7 |
from tqdm import tqdm |
|
|
8 |
from scipy.stats import pearsonr |
|
|
9 |
from sklearn.metrics import mean_squared_error, precision_score |
|
|
10 |
import torch |
|
|
11 |
from torch.nn import functional as F |
|
|
12 |
from torch import nn |
|
|
13 |
from multiprocessing import Pool |
|
|
14 |
from tqdm import tqdm |
|
|
15 |
from functools import partial |
|
|
16 |
|
|
|
17 |
from .params import main_data_path, cohort_data_path, kinship_path, withdraw_path |
|
|
18 |
|
|
|
19 |
|
|
|
20 |
def evaluate_minibatch_clean(loader, model, device): |
|
|
21 |
model.eval() |
|
|
22 |
pred_all = [] |
|
|
23 |
truth = [] |
|
|
24 |
results = {} |
|
|
25 |
for step, batch in enumerate(tqdm(loader)): |
|
|
26 |
batch = batch.to(device) |
|
|
27 |
bs_batch = batch['SNP'].batch_size |
|
|
28 |
|
|
|
29 |
out = model(batch.x_dict, batch.edge_index_dict, bs_batch) |
|
|
30 |
pred = out.reshape(-1) |
|
|
31 |
y_batch = batch['SNP'].y[:bs_batch] |
|
|
32 |
|
|
|
33 |
pred_all.extend(pred.detach().cpu().numpy()) |
|
|
34 |
truth.extend(y_batch.detach().cpu().numpy()) |
|
|
35 |
del y_batch, pred, batch, out |
|
|
36 |
|
|
|
37 |
results['pred'] = np.hstack(pred_all) |
|
|
38 |
results['truth'] = np.hstack(truth) |
|
|
39 |
return results |
|
|
40 |
|
|
|
41 |
def compute_metrics(results, binary, coverage = None, uncertainty_reg = 1, loss_fct = None): |
|
|
42 |
metrics = {} |
|
|
43 |
metrics['mse'] = mean_squared_error(results['pred'], results['truth']) |
|
|
44 |
metrics['pearsonr'] = pearsonr(results['pred'], results['truth'])[0] |
|
|
45 |
return metrics |
|
|
46 |
|
|
|
47 |
|
|
|
48 |
''' |
|
|
49 |
requires to modify the pyg source code since it does not support heterogeneous graph attention |
|
|
50 |
|
|
|
51 |
miniconda3/envs/a100_env/lib/python3.8/site-packages/torch_geometric/nn/conv/hgt_conv.py |
|
|
52 |
|
|
|
53 |
def group(xs: List[Tensor], aggr: Optional[str]) -> Optional[Tensor]: |
|
|
54 |
if len(xs) == 0: |
|
|
55 |
return None |
|
|
56 |
elif aggr is None: |
|
|
57 |
return torch.stack(xs, dim=1) |
|
|
58 |
elif len(xs) == 1: |
|
|
59 |
return xs[0] |
|
|
60 |
elif isinstance(xs, list) and isinstance(xs[0], tuple): |
|
|
61 |
xs_old = [i[0] for i in xs] |
|
|
62 |
out = torch.stack(xs_old, dim=0) |
|
|
63 |
out = getattr(torch, aggr)(out, dim=0) |
|
|
64 |
out = out[0] if isinstance(out, tuple) else out |
|
|
65 |
att = [i[1] for i in xs] |
|
|
66 |
return (out, att) |
|
|
67 |
else: |
|
|
68 |
out = torch.stack(xs, dim=0) |
|
|
69 |
out = getattr(torch, aggr)(out, dim=0) |
|
|
70 |
out = out[0] if isinstance(out, tuple) else out |
|
|
71 |
return out |
|
|
72 |
|
|
|
73 |
''' |
|
|
74 |
|
|
|
75 |
|
|
|
76 |
def get_attention_weight(model, x_dict, edge_index_dict): |
|
|
77 |
attention_all_layers = [] |
|
|
78 |
for conv in model.convs: |
|
|
79 |
out = conv(x_dict, edge_index_dict, return_attention_weights_dict = dict(zip(list(data.edge_index_dict.keys()), [True] * len(list(data.edge_index_dict.keys()))))) |
|
|
80 |
x_dict = {i: j[0] for i,j in out.items()} |
|
|
81 |
attention_layer = {i: j[1] for i,j in out.items()} |
|
|
82 |
attention_all_layers.append(attention_layer) |
|
|
83 |
x_dict = {key: x.relu() for key, x in x_dict.items()} |
|
|
84 |
idx2n_id = {} |
|
|
85 |
for i in batch.node_types: |
|
|
86 |
idx2n_id[i] = dict(zip(range(len(batch[i].n_id)), batch[i].n_id.numpy())) |
|
|
87 |
|
|
|
88 |
node_type = 'SNP' |
|
|
89 |
edge2weight_l1 = {} |
|
|
90 |
edge2weight_l2 = {} |
|
|
91 |
|
|
|
92 |
edge_type_node = [i for i,j in batch.edge_index_dict.items() if i[2] == node_type] |
|
|
93 |
edge_type_node_len = [j.shape[1] for i,j in batch.edge_index_dict.items() if i[2] == node_type] |
|
|
94 |
|
|
|
95 |
for idx, edge_type in enumerate(edge_type_node): |
|
|
96 |
edge2weight_l1[edge_type] = attention_all_layers[0][node_type][idx] |
|
|
97 |
assert edge_type_node_len[idx] == edge2weight_l1[edge_type][0].shape[1] |
|
|
98 |
|
|
|
99 |
edge2weight_l2[edge_type] = attention_all_layers[1][node_type][idx] |
|
|
100 |
assert edge_type_node_len[idx] == edge2weight_l2[edge_type][0].shape[1] |
|
|
101 |
|
|
|
102 |
edge2weight_l1[edge_type][0][0] = torch.LongTensor([idx2n_id[edge_type[0]][ent] for ent in edge2weight_l1[edge_type][0][0].detach().cpu().numpy()]) |
|
|
103 |
edge2weight_l1[edge_type][0][1] = torch.LongTensor([idx2n_id[edge_type[2]][ent] for ent in edge2weight_l1[edge_type][0][1].detach().cpu().numpy()]) |
|
|
104 |
|
|
|
105 |
return edge2weight_l1, edge2weight_l2 |
|
|
106 |
|
|
|
107 |
|
|
|
108 |
def get_fields(all_field_ids, main_data_path): |
|
|
109 |
headers = pd.read_csv(main_data_path, nrows = 1).columns |
|
|
110 |
relevant_headers = [i for i, header in enumerate(headers) if header == 'eid' or \ |
|
|
111 |
any([header.startswith('%d-' % field_id) for field_id in all_field_ids])] |
|
|
112 |
return pd.read_csv(main_data_path, usecols = relevant_headers) |
|
|
113 |
|
|
|
114 |
|
|
|
115 |
def get_row_last_values(df): |
|
|
116 |
|
|
|
117 |
result = pd.Series(np.nan, index = df.index) |
|
|
118 |
|
|
|
119 |
for column in df.columns[::-1]: |
|
|
120 |
result = result.where(pd.notnull(result), df[column]) |
|
|
121 |
|
|
|
122 |
return result |
|
|
123 |
|
|
|
124 |
def remove_kinships(eid, verbose = True): |
|
|
125 |
|
|
|
126 |
''' |
|
|
127 |
Determines which samples need to be removed such that the remaining samples will have no kinship connections whatsoever (according to the |
|
|
128 |
kinship table provided by the UKBB). In order to determine that, kinship groups will first be determined (@see get_kinship_groups), and |
|
|
129 |
only one sample will remain within each of the groups. For the sake of determinism, the sample with the lowest eid will be selected within |
|
|
130 |
each kinship group, and the rest will be discarded. |
|
|
131 |
@param eid (pd.Series): A series whose values are UKBB sample IDs, from which kinships should be removed. |
|
|
132 |
@param verbose (bool): Whether to log details of the operation of this function. |
|
|
133 |
@return: A mask of samples to keep (pd.Series with index corresponding to the eid input, and boolean values). |
|
|
134 |
''' |
|
|
135 |
|
|
|
136 |
all_eids = set(eid) |
|
|
137 |
kinship_groups = get_kinship_groups() |
|
|
138 |
|
|
|
139 |
relevant_kinship_groups = [kinship_group & all_eids for kinship_group in kinship_groups] |
|
|
140 |
relevant_kinship_groups = [kinship_group for kinship_group in relevant_kinship_groups if len(kinship_group) >= 2] |
|
|
141 |
unchosen_kinship_representatives = set.union(*[set(sorted(kinship_group)[1:]) for kinship_group in relevant_kinship_groups]) |
|
|
142 |
no_kinship_mask = ~eid.isin(unchosen_kinship_representatives) |
|
|
143 |
|
|
|
144 |
if verbose: |
|
|
145 |
print_sys(('Constructed %d kinship groups (%d samples), of which %d (%d samples) are relevant for the dataset (i.e. containing at least 2 ' + \ |
|
|
146 |
'samples in the dataset). Picking only one representative of each group and removing the %d other samples in those groups ' + \ |
|
|
147 |
'has reduced the dataset from %d to %d samples.') % (len(kinship_groups), len(set.union(*kinship_groups)), \ |
|
|
148 |
len(relevant_kinship_groups), len(set.union(*relevant_kinship_groups)), len(unchosen_kinship_representatives), len(no_kinship_mask), \ |
|
|
149 |
no_kinship_mask.sum())) |
|
|
150 |
|
|
|
151 |
return no_kinship_mask |
|
|
152 |
|
|
|
153 |
def get_kinship_groups(): |
|
|
154 |
|
|
|
155 |
''' |
|
|
156 |
Uses the kinship table provided by the UKBB (as specified by the KINSHIP_TABLE_FILE_PATH configuration) in order to determine kinship groups. |
|
|
157 |
Each kinship group is a connected component of samples in the graph of kinships (where each node is a UKBB sample, and an edge exists between |
|
|
158 |
each pair of samples reported in the kinship table). |
|
|
159 |
@return: A list of sets of strings (the strings are the sample IDs, i.e. eid). Each set of samples is a kinship group. |
|
|
160 |
''' |
|
|
161 |
|
|
|
162 |
kinship_table = pd.read_csv(kinship_path, sep = ' ') |
|
|
163 |
kinship_ids = np.array(sorted(set(kinship_table['ID1']) | set(kinship_table['ID2']))) |
|
|
164 |
n_kinship_ids = len(kinship_ids) |
|
|
165 |
kinship_id_to_index = pd.Series(np.arange(n_kinship_ids), index = kinship_ids) |
|
|
166 |
|
|
|
167 |
kinship_index1 = kinship_table['ID1'].map(kinship_id_to_index).values |
|
|
168 |
kinship_index2 = kinship_table['ID2'].map(kinship_id_to_index).values |
|
|
169 |
|
|
|
170 |
symmetric_kinship_index1 = np.concatenate([kinship_index1, kinship_index2]) |
|
|
171 |
symmetric_kinship_index2 = np.concatenate([kinship_index2, kinship_index1]) |
|
|
172 |
|
|
|
173 |
kinship_matrix = csr_matrix((np.ones(len(symmetric_kinship_index1), dtype = bool), (symmetric_kinship_index1, \ |
|
|
174 |
symmetric_kinship_index2)), shape = (n_kinship_ids, n_kinship_ids), dtype = bool) |
|
|
175 |
|
|
|
176 |
_, kinship_labels = connected_components(kinship_matrix, directed = False) |
|
|
177 |
kinship_labels = pd.Series(kinship_labels, index = kinship_ids) |
|
|
178 |
return [set(group_kinship_labels.index) for _, group_kinship_labels in kinship_labels.groupby(kinship_labels)] |
|
|
179 |
|
|
|
180 |
|
|
|
181 |
def save_dict(path, obj): |
|
|
182 |
"""save an object to a pickle file |
|
|
183 |
|
|
|
184 |
Args: |
|
|
185 |
path (str): the path to save the pickle file |
|
|
186 |
obj (object): any file |
|
|
187 |
""" |
|
|
188 |
with open(path, 'wb') as f: |
|
|
189 |
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) |
|
|
190 |
|
|
|
191 |
def load_dict(path): |
|
|
192 |
"""load an object from a path |
|
|
193 |
|
|
|
194 |
Args: |
|
|
195 |
path (str): the path where the pickle file locates |
|
|
196 |
|
|
|
197 |
Returns: |
|
|
198 |
object: loaded pickle file |
|
|
199 |
""" |
|
|
200 |
with open(path, 'rb') as f: |
|
|
201 |
return pickle.load(f) |
|
|
202 |
|
|
|
203 |
def save_model(model, config, path_dir): |
|
|
204 |
if not os.path.exists(path_dir): |
|
|
205 |
os.makedirs(path_dir) |
|
|
206 |
torch.save(model.state_dict(), path_dir + '/model.pt') |
|
|
207 |
save_dict(path_dir + '/config.pkl', config) |
|
|
208 |
|
|
|
209 |
def load_pretrained(path, model): |
|
|
210 |
state_dict = torch.load(os.path.join(path, 'model.pt'), map_location = torch.device('cpu')) |
|
|
211 |
# to support training from multi-gpus data-parallel: |
|
|
212 |
if next(iter(state_dict))[:7] == 'module.': |
|
|
213 |
# the pretrained model is from data-parallel module |
|
|
214 |
from collections import OrderedDict |
|
|
215 |
new_state_dict = OrderedDict() |
|
|
216 |
for k, v in state_dict.items(): |
|
|
217 |
name = k[7:] # remove `module.` |
|
|
218 |
new_state_dict[name] = v |
|
|
219 |
state_dict = new_state_dict |
|
|
220 |
|
|
|
221 |
model.load_state_dict(state_dict) |
|
|
222 |
return model |
|
|
223 |
|
|
|
224 |
def get_args(path): |
|
|
225 |
return load_dict(os.path.join(path, 'config.pkl')) |
|
|
226 |
|
|
|
227 |
def print_sys(s): |
|
|
228 |
"""system print |
|
|
229 |
|
|
|
230 |
Args: |
|
|
231 |
s (str): the string to print |
|
|
232 |
""" |
|
|
233 |
print(s, flush = True, file = sys.stderr) |
|
|
234 |
|
|
|
235 |
|
|
|
236 |
def get_plink_QC_fam(): |
|
|
237 |
fam_path = '/dfs/project/datasets/20220524-ukbiobank/data/genetics/ukb_all.fam' |
|
|
238 |
data = ukbb_cohort(main_data_path, cohort_data_path, withdraw_path, keep_relatives=True).cohort |
|
|
239 |
df_fam = pd.read_csv(fam_path, sep = ' ', header = None) |
|
|
240 |
df_fam[df_fam[0].isin(data)].reset_index(drop = True).to_csv('/dfs/project/datasets/20220524-ukbiobank/data/cohort/qc_cohort.txt', header = None, index = False, sep = ' ') |
|
|
241 |
|
|
|
242 |
|
|
|
243 |
def get_plink_no_rel_fam(): |
|
|
244 |
fam_path = '/dfs/project/datasets/20220524-ukbiobank/data/genetics/ukb_all.fam' |
|
|
245 |
data = ukbb_cohort(main_data_path, cohort_data_path, withdraw_path, keep_relatives=False).cohort |
|
|
246 |
df_fam = pd.read_csv(fam_path, sep = ' ', header = None) |
|
|
247 |
df_fam[df_fam[0].isin(data)].reset_index(drop = True).to_csv('/dfs/project/datasets/20220524-ukbiobank/data/cohort/no_rel.fam', header = None, index = False, sep = ' ') |
|
|
248 |
|
|
|
249 |
def get_precision_recall_at_N(res, hits_all, input_dim, N, column_rsid = 'ID', thres = 5e-8): |
|
|
250 |
eval_dict = {} |
|
|
251 |
hits_sub = res[res.P < thres][column_rsid].values |
|
|
252 |
p_sorted = res.sort_values('P')[column_rsid].values |
|
|
253 |
|
|
|
254 |
for K in range(1, input_dim, 10000): |
|
|
255 |
topK_true = np.intersect1d(hits_all, p_sorted[:K]) |
|
|
256 |
recall = len(topK_true)/len(hits_all) |
|
|
257 |
if recall > N: |
|
|
258 |
break |
|
|
259 |
|
|
|
260 |
for K in range(K-10000, K, 1000): |
|
|
261 |
topK_true = np.intersect1d(hits_all, p_sorted[:K]) |
|
|
262 |
recall = len(topK_true)/len(hits_all) |
|
|
263 |
if recall > N: |
|
|
264 |
break |
|
|
265 |
|
|
|
266 |
for K in range(K-1000, K, 100): |
|
|
267 |
topK_true = np.intersect1d(hits_all, p_sorted[:K]) |
|
|
268 |
recall = len(topK_true)/len(hits_all) |
|
|
269 |
if recall > N: |
|
|
270 |
break |
|
|
271 |
|
|
|
272 |
for K in range(K-100, K, 10): |
|
|
273 |
topK_true = np.intersect1d(hits_all, p_sorted[:K]) |
|
|
274 |
recall = len(topK_true)/len(hits_all) |
|
|
275 |
if recall > N: |
|
|
276 |
break |
|
|
277 |
|
|
|
278 |
for K in range(K-10, K): |
|
|
279 |
topK_true = np.intersect1d(hits_all, p_sorted[:K]) |
|
|
280 |
recall = len(topK_true)/len(hits_all) |
|
|
281 |
if recall > N: |
|
|
282 |
break |
|
|
283 |
|
|
|
284 |
print_sys('PR@' + str(int(N * 100)) + ' is achieved when K = ' + str(K)) |
|
|
285 |
eval_dict['PR@' + str(int(N * 100)) + '_K'] = K |
|
|
286 |
topK_true = [1 if i in hits_all else 0 for i in p_sorted[:K]] |
|
|
287 |
precision = precision_score(topK_true, [1] * K) |
|
|
288 |
eval_dict['PR@' + str(int(N * 100))] = precision |
|
|
289 |
|
|
|
290 |
return eval_dict |
|
|
291 |
|
|
|
292 |
def get_gwas_results(res, hits_all, input_dim, column_rsid = 'ID', thres = 5e-8): |
|
|
293 |
eval_dict = {} |
|
|
294 |
hits_sub = res[res.P < thres][column_rsid].values |
|
|
295 |
eval_dict['overall_recall'] = len(np.intersect1d(hits_sub, hits_all))/len(hits_all) |
|
|
296 |
if len(hits_sub) == 0: |
|
|
297 |
eval_dict['overall_precision'] = 0 |
|
|
298 |
eval_dict['overall_f1'] = 0 |
|
|
299 |
else: |
|
|
300 |
eval_dict['overall_precision'] = len(np.intersect1d(hits_sub, hits_all))/len(hits_sub) |
|
|
301 |
eval_dict['overall_f1'] = 2 * eval_dict['overall_recall'] * eval_dict['overall_precision']/(eval_dict['overall_recall'] + eval_dict['overall_precision']) |
|
|
302 |
for K in [100, 500, 1000, 5000]: |
|
|
303 |
topK_true = [1 if i in hits_all else 0 for i in res.sort_values('P').iloc[:K][column_rsid].values] |
|
|
304 |
eval_dict['precision_' + str(K)] = precision_score(topK_true, [1] * K) |
|
|
305 |
eval_dict['recall_' + str(K)] = sum(topK_true)/len(hits_all) |
|
|
306 |
|
|
|
307 |
eval_dict.update(get_precision_recall_at_N(res, hits_all, input_dim, 0.8, column_rsid, thres)) |
|
|
308 |
eval_dict.update(get_precision_recall_at_N(res, hits_all, input_dim, 0.9, column_rsid, thres)) |
|
|
309 |
eval_dict.update(get_precision_recall_at_N(res, hits_all, input_dim, 0.95, column_rsid, thres)) |
|
|
310 |
return eval_dict |
|
|
311 |
|
|
|
312 |
|
|
|
313 |
def find_nearest(array, value): |
|
|
314 |
array = np.asarray(array) |
|
|
315 |
idx = (np.abs(array - value)).argmin() |
|
|
316 |
return array[idx] |
|
|
317 |
|
|
|
318 |
|
|
|
319 |
def get_preds(logits, multi_label): |
|
|
320 |
if multi_label: |
|
|
321 |
preds = (logits.sigmoid() > 0.5).float() |
|
|
322 |
elif logits.shape[1] > 1: # multi-class |
|
|
323 |
preds = logits.argmax(dim=1).float() |
|
|
324 |
else: # binary |
|
|
325 |
preds = (logits.sigmoid() > 0.5).float() |
|
|
326 |
return preds |
|
|
327 |
|
|
|
328 |
def process_data(data, use_edge_attr): |
|
|
329 |
if not use_edge_attr: |
|
|
330 |
data.edge_attr = None |
|
|
331 |
if data.get('edge_label', None) is None: |
|
|
332 |
data.edge_label = {i: torch.zeros(j.shape[1]) for i, j in data.edge_index_dict.items()} |
|
|
333 |
return data |
|
|
334 |
|
|
|
335 |
|
|
|
336 |
def load_checkpoint(model, model_dir, model_name, map_location=None): |
|
|
337 |
checkpoint = torch.load(model_dir / (model_name + '.pt'), map_location=map_location) |
|
|
338 |
model.load_state_dict(checkpoint['model_state_dict']) |
|
|
339 |
|
|
|
340 |
|
|
|
341 |
def save_checkpoint(model, model_dir, model_name): |
|
|
342 |
torch.save({'model_state_dict': model.state_dict()}, model_dir / (model_name + '.pt')) |
|
|
343 |
|
|
|
344 |
|
|
|
345 |
def get_lr(optimizer): |
|
|
346 |
for param_group in optimizer.param_groups: |
|
|
347 |
return param_group['lr'] |
|
|
348 |
|
|
|
349 |
def flatten(list_of_lists): |
|
|
350 |
return [item for sublist in list_of_lists for item in sublist] |
|
|
351 |
|
|
|
352 |
|
|
|
353 |
def find_connected_components_details(edges): |
|
|
354 |
graph = {} |
|
|
355 |
for u, v in edges: |
|
|
356 |
if u not in graph: |
|
|
357 |
graph[u] = [] |
|
|
358 |
if v not in graph: |
|
|
359 |
graph[v] = [] |
|
|
360 |
graph[u].append(v) |
|
|
361 |
graph[v].append(u) |
|
|
362 |
|
|
|
363 |
def dfs(vertex): |
|
|
364 |
visited_nodes = set() |
|
|
365 |
visited_edges = set() |
|
|
366 |
stack = [vertex] |
|
|
367 |
|
|
|
368 |
while stack: |
|
|
369 |
current = stack.pop() |
|
|
370 |
if current not in visited_nodes: |
|
|
371 |
visited_nodes.add(current) |
|
|
372 |
for neighbor in graph[current]: |
|
|
373 |
stack.append(neighbor) |
|
|
374 |
if (current, neighbor) not in visited_edges and (neighbor, current) not in visited_edges: |
|
|
375 |
visited_edges.add((current, neighbor)) |
|
|
376 |
return list(visited_nodes), list(visited_edges) |
|
|
377 |
|
|
|
378 |
visited = set() |
|
|
379 |
components = [] |
|
|
380 |
|
|
|
381 |
for vertex in tqdm(graph): |
|
|
382 |
if vertex not in visited: |
|
|
383 |
nodes, edges = dfs(vertex) |
|
|
384 |
components.append({ |
|
|
385 |
'nodes': nodes, |
|
|
386 |
'edges': edges |
|
|
387 |
}) |
|
|
388 |
visited.update(nodes) |
|
|
389 |
|
|
|
390 |
return components |
|
|
391 |
|
|
|
392 |
def flatten(lst): |
|
|
393 |
return [item for sublist in lst for item in sublist] |
|
|
394 |
|
|
|
395 |
|
|
|
396 |
|
|
|
397 |
def ldsc_regression_weights(ld, w_ld, N, M, hsq, intercept=None, ii=None): |
|
|
398 |
''' |
|
|
399 |
Regression weights. |
|
|
400 |
|
|
|
401 |
Parameters |
|
|
402 |
---------- |
|
|
403 |
ld : np.matrix with shape (n_snp, 1) |
|
|
404 |
LD Scores (non-partitioned). |
|
|
405 |
w_ld : np.matrix with shape (n_snp, 1) |
|
|
406 |
LD Scores (non-partitioned) computed with sum r^2 taken over only those SNPs included |
|
|
407 |
in the regression. |
|
|
408 |
N : np.matrix of ints > 0 with shape (n_snp, 1) |
|
|
409 |
Number of individuals sampled for each SNP. |
|
|
410 |
M : float > 0 |
|
|
411 |
Number of SNPs used for estimating LD Score (need not equal number of SNPs included in |
|
|
412 |
the regression). |
|
|
413 |
hsq : float in [0,1] |
|
|
414 |
Heritability estimate. |
|
|
415 |
|
|
|
416 |
Returns |
|
|
417 |
------- |
|
|
418 |
w : np.matrix with shape (n_snp, 1) |
|
|
419 |
Regression weights. Approx equal to reciprocal of conditional variance function. |
|
|
420 |
|
|
|
421 |
''' |
|
|
422 |
M = float(M) |
|
|
423 |
if intercept is None: |
|
|
424 |
intercept = 1 |
|
|
425 |
|
|
|
426 |
hsq = max(hsq, 0.0) |
|
|
427 |
hsq = min(hsq, 1.0) |
|
|
428 |
ld = np.fmax(ld, 1.0) |
|
|
429 |
w_ld = np.fmax(w_ld, 1.0) |
|
|
430 |
c = hsq * N / M |
|
|
431 |
het_w = 1.0 / (2 * np.square(intercept + np.multiply(c, ld))) |
|
|
432 |
oc_w = 1.0 / w_ld |
|
|
433 |
w = np.multiply(het_w, oc_w) |
|
|
434 |
return w |
|
|
435 |
|
|
|
436 |
|
|
|
437 |
def get_network_weight(run, data): |
|
|
438 |
model = run.best_model |
|
|
439 |
model = model.to('cpu') |
|
|
440 |
graph_data = data.data.to('cpu') |
|
|
441 |
|
|
|
442 |
x_dict, edge_index_dict = graph_data.x_dict, graph_data.edge_index_dict |
|
|
443 |
attention_all_layers = [] |
|
|
444 |
print('Retrieving weights...') |
|
|
445 |
|
|
|
446 |
x_dict['SNP'] = model.snp_feat_mlp(x_dict['SNP']) |
|
|
447 |
x_dict['Gene'] = model.gene_feat_mlp(x_dict['Gene']) |
|
|
448 |
x_dict['CellularComponent'] = model.go_feat_mlp(x_dict['CellularComponent']) |
|
|
449 |
x_dict['BiologicalProcess'] = model.go_feat_mlp(x_dict['BiologicalProcess']) |
|
|
450 |
x_dict['MolecularFunction'] = model.go_feat_mlp(x_dict['MolecularFunction']) |
|
|
451 |
|
|
|
452 |
for conv in model.convs: |
|
|
453 |
x_dict = conv(x_dict, edge_index_dict, |
|
|
454 |
return_attention_weights_dict = dict(zip(list(graph_data.edge_index_dict.keys()), |
|
|
455 |
[True] * len(list(graph_data.edge_index_dict.keys())))), |
|
|
456 |
return_raw_attention_weights_dict = dict(zip(list(graph_data.edge_index_dict.keys()), |
|
|
457 |
[True] * len(list(graph_data.edge_index_dict.keys())))), |
|
|
458 |
) |
|
|
459 |
attention_layer = {i: j[1] for i,j in x_dict.items()} |
|
|
460 |
attention_all_layers.append(attention_layer) |
|
|
461 |
x_dict = {i: j[0] for i,j in x_dict.items()} |
|
|
462 |
|
|
|
463 |
layer2rel2att = { |
|
|
464 |
'l1': {}, |
|
|
465 |
'l2': {} |
|
|
466 |
} |
|
|
467 |
|
|
|
468 |
print('Aggregating across node types...') |
|
|
469 |
|
|
|
470 |
for node_type in graph_data.x_dict.keys(): |
|
|
471 |
edge_type_node = [i for i,j in graph_data.edge_index_dict.items() if i[2] == node_type] |
|
|
472 |
for idx, i in enumerate(attention_all_layers[0][node_type]): |
|
|
473 |
layer2rel2att['l1'][edge_type_node[idx]] = np.vstack((i[0].detach().cpu().numpy(), i[1].detach().cpu().numpy().reshape(-1))) |
|
|
474 |
for idx, i in enumerate(attention_all_layers[1][node_type]): |
|
|
475 |
layer2rel2att['l2'][edge_type_node[idx]] = np.vstack((i[0].detach().cpu().numpy(), i[1].detach().cpu().numpy().reshape(-1))) |
|
|
476 |
df_val_all = pd.DataFrame() |
|
|
477 |
for rel, value in layer2rel2att['l1'].items(): |
|
|
478 |
df_val = pd.DataFrame(value).T.rename(columns = {0: 'h_idx', 1: 't_idx', 2: 'weight'}) |
|
|
479 |
df_val['h_type'] = rel[0] |
|
|
480 |
df_val['rel_type'] = rel[1] |
|
|
481 |
df_val['t_type'] = rel[2] |
|
|
482 |
df_val['layer'] = 'l1' |
|
|
483 |
df_val_all = df_val_all.append(df_val) |
|
|
484 |
|
|
|
485 |
for rel, value in layer2rel2att['l2'].items(): |
|
|
486 |
df_val = pd.DataFrame(value).T.rename(columns = {0: 'h_idx', 1: 't_idx', 2: 'weight'}) |
|
|
487 |
df_val['h_type'] = rel[0] |
|
|
488 |
df_val['rel_type'] = rel[1] |
|
|
489 |
df_val['t_type'] = rel[2] |
|
|
490 |
df_val['layer'] = 'l2' |
|
|
491 |
df_val_all = df_val_all.append(df_val) |
|
|
492 |
|
|
|
493 |
df_val_all = df_val_all.drop_duplicates(['h_idx', 't_idx', 'rel_type', 'layer']) |
|
|
494 |
return df_val_all |
|
|
495 |
|
|
|
496 |
def get_local_interpretation(query_snp, v2g, g2g, g2p, g2v, id2idx, K_neighbors): |
|
|
497 |
try: |
|
|
498 |
snp2gene_around_snp = v2g[v2g.t_idx == id2idx['SNP'][query_snp]] |
|
|
499 |
snp2gene_around_snp = snp2gene_around_snp.sort_values('importance')[::-1] |
|
|
500 |
gene_hit = snp2gene_around_snp.iloc[:K_neighbors] |
|
|
501 |
gene_hit.loc[:, 'rel_type'] = gene_hit.rel_type.apply(lambda x: x[4:]) |
|
|
502 |
|
|
|
503 |
g2g_focal = pd.DataFrame() |
|
|
504 |
for gene in gene_hit.h_id.values: |
|
|
505 |
g2g_focal = g2g_focal.append(g2g[g2g.t_id == gene].sort_values('importance')[::-1].iloc[:K_neighbors]) |
|
|
506 |
g2g_focal.loc[:,'rel_type'] = g2g_focal.rel_type.apply(lambda x: x.split('-')[1]) |
|
|
507 |
|
|
|
508 |
g2p_focal = pd.DataFrame() |
|
|
509 |
for gene in gene_hit.h_id.values: |
|
|
510 |
g2p_focal = g2p_focal.append(g2p[g2p.t_id == gene].sort_values('importance')[::-1].iloc[:K_neighbors]) |
|
|
511 |
|
|
|
512 |
g2p_focal.loc[:,'rel_type'] = g2p_focal.rel_type.apply(lambda x: x.split('-')[1]) |
|
|
513 |
|
|
|
514 |
g2v_focal = pd.DataFrame() |
|
|
515 |
for gene in gene_hit.h_id.values: |
|
|
516 |
g2v_focal = g2v_focal.append(g2v[g2v.t_id == gene].sort_values('importance')[::-1].iloc[:K_neighbors]) |
|
|
517 |
local_neighborhood_around_snp = pd.concat((gene_hit, g2g_focal, g2p_focal, g2v_focal)) |
|
|
518 |
local_neighborhood_around_snp.loc[:,'QUERY_SNP'] = query_snp |
|
|
519 |
return local_neighborhood_around_snp |
|
|
520 |
except: |
|
|
521 |
return None |
|
|
522 |
|
|
|
523 |
def generate_viz(run, df_network, data_path, variant_threshold = 5e-8, |
|
|
524 |
magma_path = None, magma_threshold = 0.05, program_threshold = 0.05, |
|
|
525 |
K_neighbors = 3, num_cpus = 1): |
|
|
526 |
gwas = run.kgwas_res |
|
|
527 |
idx2id = run.data.idx2id |
|
|
528 |
id2idx = run.data.id2idx |
|
|
529 |
print('Start generating disease critical network...') |
|
|
530 |
|
|
|
531 |
gene_sets = load_dict(os.path.join(data_path, 'misc_data/gene_set_bp.pkl')) |
|
|
532 |
with open(os.path.join(data_path, 'misc_data/go2name.pkl'), 'rb') as f: |
|
|
533 |
go2name = pickle.load(f) |
|
|
534 |
|
|
|
535 |
df_network = df_network[~df_network.rel_type.isin(['TSS', 'rev_TSS'])] |
|
|
536 |
|
|
|
537 |
snp2genes = df_network[(df_network.t_type == 'SNP') |
|
|
538 |
& (df_network.h_type == 'Gene')] |
|
|
539 |
gene2gene = df_network[(df_network.t_type == 'Gene') |
|
|
540 |
& (df_network.h_type == 'Gene')] |
|
|
541 |
gene2go = df_network[(df_network.t_type == 'Gene') |
|
|
542 |
& (df_network.h_type.isin(['BiologicalProcess']))] |
|
|
543 |
|
|
|
544 |
if 'SNP' not in gwas.columns.values: |
|
|
545 |
gwas.loc[:, 'SNP'] = gwas['ID'] |
|
|
546 |
hit_snps = gwas[gwas.P < 5e-8].SNP.values |
|
|
547 |
hit_snps_idx = [id2idx['SNP'][i] for i in hit_snps] |
|
|
548 |
|
|
|
549 |
if magma_path is not None: |
|
|
550 |
# use magma genes and GSEA programs |
|
|
551 |
print('Using MAGMA genes to filter...') |
|
|
552 |
gwas_gene = pd.read_csv(magma_path, sep = '\s+') |
|
|
553 |
id2gene = dict(pd.read_csv(os.path.join(data_path, 'misc_data/NCBI37.3.gene.loc'), sep = '\t', header = None)[[0,5]].values) |
|
|
554 |
gwas_gene.loc[:,'GENE'] = gwas_gene['GENE'].apply(lambda x: id2gene[x]) |
|
|
555 |
|
|
|
556 |
import statsmodels.api as sm |
|
|
557 |
p_values = gwas_gene['P'] |
|
|
558 |
corrected_p_values = sm.stats.multipletests(p_values, alpha=magma_threshold, method='bonferroni')[1] |
|
|
559 |
gwas_gene.loc[:,'corrected_p_value'] = corrected_p_values |
|
|
560 |
df_gene_hits = gwas_gene[gwas_gene['corrected_p_value'] < magma_threshold] |
|
|
561 |
rnk = df_gene_hits[['GENE', 'ZSTAT']].set_index('GENE') |
|
|
562 |
gene_hit_idx = [id2idx['Gene'][i] for i in df_gene_hits.GENE.values if i in id2idx['Gene']] |
|
|
563 |
|
|
|
564 |
try: |
|
|
565 |
gsea_results_BP = gp.prerank(rnk=rnk, gene_sets=gene_sets, |
|
|
566 |
outdir=None, permutation_num=100, |
|
|
567 |
min_size=2, max_size=1000, seed = 42) |
|
|
568 |
gsea_results_BP = gsea_results_BP.res2d |
|
|
569 |
go_hits = gsea_results_BP[gsea_results_BP['NOM p-val'] < program_threshold].Term.values |
|
|
570 |
if len(go_hits) <= 5: |
|
|
571 |
go_hits = gsea_results_BP.sort_values('NOM p-val')[:5].Term.values |
|
|
572 |
go_hits_idx = [id2idx['BiologicalProcess'][x] for x in go_hits] |
|
|
573 |
print('Using GSEA gene programs to filter...') |
|
|
574 |
except: |
|
|
575 |
print('No significant gene programs found...') |
|
|
576 |
go_hits_idx = [] |
|
|
577 |
else: |
|
|
578 |
# use all genes and gene programs |
|
|
579 |
print('No filters... Using all genes and gene programs...') |
|
|
580 |
gene_hit_idx = list(id2idx['Gene'].values()) |
|
|
581 |
go_hits_idx = list(id2idx['BiologicalProcess'].values()) |
|
|
582 |
|
|
|
583 |
|
|
|
584 |
snp2genes_hit = snp2genes[snp2genes.t_idx.isin(hit_snps_idx) & snp2genes.h_idx.isin(gene_hit_idx)] |
|
|
585 |
rel2mean = snp2genes_hit.groupby('rel_type').weight.mean().reset_index().rename(columns = {'weight': 'rel_type_mean'}) |
|
|
586 |
rel2std = snp2genes_hit.groupby('rel_type').weight.agg(np.std).reset_index().rename(columns = {'weight': 'rel_type_std'}) |
|
|
587 |
|
|
|
588 |
snp2genes_hit = snp2genes_hit.merge(rel2std) |
|
|
589 |
snp2genes_hit = snp2genes_hit.merge(rel2mean) |
|
|
590 |
snp2genes_hit.loc[:,'z_rel'] = (snp2genes_hit['weight'] - snp2genes_hit['rel_type_mean'])/snp2genes_hit['rel_type_std'] |
|
|
591 |
|
|
|
592 |
v2g_hit = snp2genes_hit.groupby(['h_idx', 't_idx']).z_rel.max().reset_index().rename(columns={'z_rel': 'importance'}) |
|
|
593 |
v2g_hit_with_rel_type = pd.merge(v2g_hit, snp2genes_hit, left_on=['h_idx', 't_idx', 'importance'], right_on=['h_idx', 't_idx', 'z_rel'], how='left') |
|
|
594 |
v2g_hit = v2g_hit_with_rel_type[['h_idx', 't_idx', 'importance', 'h_type', 't_type', 'rel_type']] |
|
|
595 |
v2g_hit.loc[:,'rel_type'] = v2g_hit.rel_type.apply(lambda x: x[4:]) |
|
|
596 |
v2g_hit.loc[:,'Category'] = 'V2G' |
|
|
597 |
|
|
|
598 |
v2g_hit.loc[:,'h_id'] = v2g_hit['h_idx'].apply(lambda x: idx2id['Gene'][x]) |
|
|
599 |
v2g_hit.loc[:,'t_id'] = v2g_hit['t_idx'].apply(lambda x: idx2id['SNP'][x]) |
|
|
600 |
|
|
|
601 |
gene2gene_hit = gene2gene[gene2gene.h_idx.isin(gene_hit_idx) & gene2gene.t_idx.isin(gene_hit_idx)] |
|
|
602 |
rel2mean = gene2gene_hit.groupby('rel_type').weight.mean().reset_index().rename(columns = {'weight': 'rel_type_mean'}) |
|
|
603 |
rel2std = gene2gene_hit.groupby('rel_type').weight.agg(np.std).reset_index().rename(columns = {'weight': 'rel_type_std'}) |
|
|
604 |
|
|
|
605 |
gene2gene_hit = gene2gene_hit.merge(rel2std) |
|
|
606 |
gene2gene_hit = gene2gene_hit.merge(rel2mean) |
|
|
607 |
gene2gene_hit.loc[:,'z_rel'] = (gene2gene_hit['weight'] - gene2gene_hit['rel_type_mean'])/gene2gene_hit['rel_type_std'] |
|
|
608 |
|
|
|
609 |
g2g_hit = gene2gene_hit.groupby(['h_idx', 't_idx']).z_rel.max().reset_index().rename(columns={'z_rel': 'importance'}) |
|
|
610 |
g2g_hit_with_rel_type = pd.merge(g2g_hit, gene2gene_hit, left_on=['h_idx', 't_idx', 'importance'], right_on=['h_idx', 't_idx', 'z_rel'], how='left') |
|
|
611 |
g2g_hit = g2g_hit_with_rel_type[['h_idx', 't_idx', 'importance', 'h_type', 't_type', 'rel_type']] |
|
|
612 |
g2g_hit.loc[:,'rel_type'] = g2g_hit.rel_type.apply(lambda x: x.split('-')[1]) |
|
|
613 |
g2g_hit.loc[:,'Category'] = 'G2G' |
|
|
614 |
|
|
|
615 |
g2g_hit.loc[:,'h_id'] = g2g_hit['h_idx'].apply(lambda x: idx2id['Gene'][x]) |
|
|
616 |
g2g_hit.loc[:,'t_id'] = g2g_hit['t_idx'].apply(lambda x: idx2id['Gene'][x]) |
|
|
617 |
|
|
|
618 |
gene2program_hit = gene2go[gene2go.t_idx.isin(gene_hit_idx) & gene2go.h_idx.isin(go_hits_idx)] |
|
|
619 |
rel2mean = gene2program_hit.groupby('rel_type').weight.mean().reset_index().rename(columns = {'weight': 'rel_type_mean'}) |
|
|
620 |
rel2std = gene2program_hit.groupby('rel_type').weight.agg(np.std).reset_index().rename(columns = {'weight': 'rel_type_std'}) |
|
|
621 |
|
|
|
622 |
gene2program_hit = gene2program_hit.merge(rel2std) |
|
|
623 |
gene2program_hit = gene2program_hit.merge(rel2mean) |
|
|
624 |
gene2program_hit.loc[:,'z_rel'] = (gene2program_hit['weight'] - gene2program_hit['rel_type_mean'])/gene2program_hit['rel_type_std'] |
|
|
625 |
|
|
|
626 |
g2p_hit = gene2program_hit.groupby(['h_idx', 't_idx']).z_rel.max().reset_index().rename(columns={'z_rel': 'importance'}) |
|
|
627 |
|
|
|
628 |
g2p_hit_with_rel_type = pd.merge(g2p_hit, gene2program_hit, left_on=['h_idx', 't_idx', 'importance'], right_on=['h_idx', 't_idx', 'z_rel'], how='left') |
|
|
629 |
g2p_hit = g2p_hit_with_rel_type[['h_idx', 't_idx', 'importance', 'h_type', 't_type', 'rel_type']] |
|
|
630 |
g2p_hit.loc[:,'rel_type'] = g2p_hit.rel_type.apply(lambda x: x.split('-')[1]) |
|
|
631 |
g2p_hit.loc[:,'Category'] = 'G2P' |
|
|
632 |
g2p_hit.loc[:,'h_id'] = g2p_hit['h_idx'].apply(lambda x: idx2id['BiologicalProcess'][x]) |
|
|
633 |
g2p_hit.loc[:,'t_id'] = g2p_hit['t_idx'].apply(lambda x: idx2id['Gene'][x]) |
|
|
634 |
g2p_hit.loc[:,'h_id'] = g2p_hit.h_id.apply(lambda x: go2name[x].capitalize() if x in go2name else x) |
|
|
635 |
disease_critical_network = pd.concat((v2g_hit, g2g_hit, g2p_hit)).reset_index(drop = True) |
|
|
636 |
|
|
|
637 |
print('Disease critical network finished generating...') |
|
|
638 |
print('Generating variant interpretation networks...') |
|
|
639 |
|
|
|
640 |
#### get for variant interpretation -> since we are looking at top K neighbors, we don't filter |
|
|
641 |
|
|
|
642 |
# V2G |
|
|
643 |
rel2mean = snp2genes_hit.groupby('rel_type').weight.mean().reset_index().rename(columns = {'weight': 'rel_type_mean'}) |
|
|
644 |
rel2std = snp2genes_hit.groupby('rel_type').weight.agg(np.std).reset_index().rename(columns = {'weight': 'rel_type_std'}) |
|
|
645 |
|
|
|
646 |
snp2genes = snp2genes.merge(rel2std) |
|
|
647 |
snp2genes = snp2genes.merge(rel2mean) |
|
|
648 |
snp2genes.loc[:,'z_rel'] = (snp2genes['weight'] - snp2genes['rel_type_mean'])/snp2genes['rel_type_std'] |
|
|
649 |
snp2genes = snp2genes.rename(columns={'z_rel': 'importance'}) |
|
|
650 |
v2g = snp2genes.groupby(['h_idx', 't_idx']).importance.max().reset_index() |
|
|
651 |
v2g_with_rel_type = pd.merge(v2g, snp2genes, left_on=['h_idx', 't_idx', 'importance'], right_on=['h_idx', 't_idx', 'importance'], how='left') |
|
|
652 |
v2g = v2g_with_rel_type[['h_idx', 't_idx', 'importance', 'h_type', 't_type', 'rel_type']] |
|
|
653 |
|
|
|
654 |
v2g.loc[:,'h_id'] = v2g['h_idx'].apply(lambda x: idx2id['Gene'][x]) |
|
|
655 |
v2g.loc[:,'t_id'] = v2g['t_idx'].apply(lambda x: idx2id['SNP'][x]) |
|
|
656 |
|
|
|
657 |
## G2G |
|
|
658 |
|
|
|
659 |
rel2mean = gene2gene_hit.groupby('rel_type').weight.mean().reset_index().rename(columns = {'weight': 'rel_type_mean'}) |
|
|
660 |
rel2std = gene2gene_hit.groupby('rel_type').weight.agg(np.std).reset_index().rename(columns = {'weight': 'rel_type_std'}) |
|
|
661 |
|
|
|
662 |
gene2gene = gene2gene.merge(rel2std) |
|
|
663 |
gene2gene = gene2gene.merge(rel2mean) |
|
|
664 |
gene2gene.loc[:,'z_rel'] = (gene2gene['weight'] - gene2gene['rel_type_mean'])/gene2gene['rel_type_std'] |
|
|
665 |
gene2gene = gene2gene.rename(columns={'z_rel': 'importance'}) |
|
|
666 |
|
|
|
667 |
g2g = gene2gene.groupby(['h_idx', 't_idx']).importance.max().reset_index() |
|
|
668 |
g2g_with_rel_type = pd.merge(g2g, gene2gene, left_on=['h_idx', 't_idx', 'importance'], right_on=['h_idx', 't_idx', 'importance'], how='left') |
|
|
669 |
g2g = g2g_with_rel_type[['h_idx', 't_idx', 'importance', 'h_type', 't_type', 'rel_type']] |
|
|
670 |
|
|
|
671 |
g2g.loc[:,'h_id'] = g2g['h_idx'].apply(lambda x: idx2id['Gene'][x]) |
|
|
672 |
g2g.loc[:,'t_id'] = g2g['t_idx'].apply(lambda x: idx2id['Gene'][x]) |
|
|
673 |
g2g = g2g[g2g.h_idx != g2g.t_idx] |
|
|
674 |
|
|
|
675 |
## G2P |
|
|
676 |
|
|
|
677 |
rel2mean = gene2program_hit.groupby('rel_type').weight.mean().reset_index().rename(columns = {'weight': 'rel_type_mean'}) |
|
|
678 |
rel2std = gene2program_hit.groupby('rel_type').weight.agg(np.std).reset_index().rename(columns = {'weight': 'rel_type_std'}) |
|
|
679 |
|
|
|
680 |
gene2go = gene2go.merge(rel2std) |
|
|
681 |
gene2go = gene2go.merge(rel2mean) |
|
|
682 |
gene2go.loc[:,'z_rel'] = (gene2go['weight'] - gene2go['rel_type_mean'])/gene2go['rel_type_std'] |
|
|
683 |
gene2go = gene2go.rename(columns={'z_rel': 'importance'}) |
|
|
684 |
|
|
|
685 |
g2p = gene2go.groupby(['h_idx', 't_idx']).importance.max().reset_index() |
|
|
686 |
g2p_with_rel_type = pd.merge(g2p, gene2go, left_on=['h_idx', 't_idx', 'importance'], right_on=['h_idx', 't_idx', 'importance'], how='left') |
|
|
687 |
g2p = g2p_with_rel_type[['h_idx', 't_idx', 'importance', 'h_type', 't_type', 'rel_type']] |
|
|
688 |
|
|
|
689 |
g2p.loc[:,'h_id'] = g2p['h_idx'].apply(lambda x: go2name[idx2id['BiologicalProcess'][x]].capitalize() if idx2id['BiologicalProcess'][x] in go2name else idx2id['BiologicalProcess'][x]) |
|
|
690 |
g2p.loc[:,'t_id'] = g2p['t_idx'].apply(lambda x: idx2id['Gene'][x]) |
|
|
691 |
|
|
|
692 |
|
|
|
693 |
## G2V |
|
|
694 |
|
|
|
695 |
gene2snp = df_network[(df_network.h_type == 'SNP') |
|
|
696 |
& (df_network.t_type == 'Gene')] |
|
|
697 |
|
|
|
698 |
gene2snp_hit = gene2snp[gene2snp.h_idx.isin(hit_snps_idx) & gene2snp.t_idx.isin(gene_hit_idx)] |
|
|
699 |
|
|
|
700 |
rel2mean = gene2snp_hit.groupby('rel_type').weight.mean().reset_index().rename(columns = {'weight': 'rel_type_mean'}) |
|
|
701 |
rel2std = gene2snp_hit.groupby('rel_type').weight.agg(np.std).reset_index().rename(columns = {'weight': 'rel_type_std'}) |
|
|
702 |
|
|
|
703 |
gene2snp = gene2snp.merge(rel2std) |
|
|
704 |
gene2snp = gene2snp.merge(rel2mean) |
|
|
705 |
gene2snp.loc[:,'z_rel'] = (gene2snp['weight'] - gene2snp['rel_type_mean'])/gene2snp['rel_type_std'] |
|
|
706 |
gene2snp = gene2snp.rename(columns={'z_rel': 'importance'}) |
|
|
707 |
|
|
|
708 |
g2v = gene2snp.groupby(['h_idx', 't_idx']).importance.max().reset_index() |
|
|
709 |
g2v_with_rel_type = pd.merge(g2v, gene2snp, left_on=['h_idx', 't_idx', 'importance'], right_on=['h_idx', 't_idx', 'importance'], how='left') |
|
|
710 |
g2v = g2v_with_rel_type[['h_idx', 't_idx', 'importance', 'h_type', 't_type', 'rel_type']] |
|
|
711 |
|
|
|
712 |
g2v.loc[:,'h_id'] = g2v['h_idx'].apply(lambda x: idx2id['SNP'][x]) |
|
|
713 |
g2v.loc[:,'t_id'] = g2v['t_idx'].apply(lambda x: idx2id['Gene'][x]) |
|
|
714 |
|
|
|
715 |
print('Number of hit snps: ', len(hit_snps)) |
|
|
716 |
process_func = partial(get_local_interpretation, v2g=v2g, g2g=g2g, g2p=g2p, g2v=g2v, id2idx=id2idx, K_neighbors=K_neighbors) |
|
|
717 |
|
|
|
718 |
with Pool(num_cpus) as p: |
|
|
719 |
res = list(tqdm(p.imap(process_func, hit_snps), total=len(hit_snps))) |
|
|
720 |
try: |
|
|
721 |
df_variant_interpretation = pd.concat([i for i in res if i is not None]) |
|
|
722 |
except: |
|
|
723 |
df_variant_interpretation = pd.DataFrame() |
|
|
724 |
|
|
|
725 |
return df_variant_interpretation, disease_critical_network |