[8790ab]: / kgwas / utils.py

Download this file

725 lines (570 with data), 33.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
import os, sys
from scipy.sparse import csr_matrix
from scipy.sparse.csgraph import connected_components
import pandas as pd
import numpy as np
import pickle
from tqdm import tqdm
from scipy.stats import pearsonr
from sklearn.metrics import mean_squared_error, precision_score
import torch
from torch.nn import functional as F
from torch import nn
from multiprocessing import Pool
from tqdm import tqdm
from functools import partial
from .params import main_data_path, cohort_data_path, kinship_path, withdraw_path
def evaluate_minibatch_clean(loader, model, device):
model.eval()
pred_all = []
truth = []
results = {}
for step, batch in enumerate(tqdm(loader)):
batch = batch.to(device)
bs_batch = batch['SNP'].batch_size
out = model(batch.x_dict, batch.edge_index_dict, bs_batch)
pred = out.reshape(-1)
y_batch = batch['SNP'].y[:bs_batch]
pred_all.extend(pred.detach().cpu().numpy())
truth.extend(y_batch.detach().cpu().numpy())
del y_batch, pred, batch, out
results['pred'] = np.hstack(pred_all)
results['truth'] = np.hstack(truth)
return results
def compute_metrics(results, binary, coverage = None, uncertainty_reg = 1, loss_fct = None):
metrics = {}
metrics['mse'] = mean_squared_error(results['pred'], results['truth'])
metrics['pearsonr'] = pearsonr(results['pred'], results['truth'])[0]
return metrics
'''
requires to modify the pyg source code since it does not support heterogeneous graph attention
miniconda3/envs/a100_env/lib/python3.8/site-packages/torch_geometric/nn/conv/hgt_conv.py
def group(xs: List[Tensor], aggr: Optional[str]) -> Optional[Tensor]:
if len(xs) == 0:
return None
elif aggr is None:
return torch.stack(xs, dim=1)
elif len(xs) == 1:
return xs[0]
elif isinstance(xs, list) and isinstance(xs[0], tuple):
xs_old = [i[0] for i in xs]
out = torch.stack(xs_old, dim=0)
out = getattr(torch, aggr)(out, dim=0)
out = out[0] if isinstance(out, tuple) else out
att = [i[1] for i in xs]
return (out, att)
else:
out = torch.stack(xs, dim=0)
out = getattr(torch, aggr)(out, dim=0)
out = out[0] if isinstance(out, tuple) else out
return out
'''
def get_attention_weight(model, x_dict, edge_index_dict):
attention_all_layers = []
for conv in model.convs:
out = conv(x_dict, edge_index_dict, return_attention_weights_dict = dict(zip(list(data.edge_index_dict.keys()), [True] * len(list(data.edge_index_dict.keys())))))
x_dict = {i: j[0] for i,j in out.items()}
attention_layer = {i: j[1] for i,j in out.items()}
attention_all_layers.append(attention_layer)
x_dict = {key: x.relu() for key, x in x_dict.items()}
idx2n_id = {}
for i in batch.node_types:
idx2n_id[i] = dict(zip(range(len(batch[i].n_id)), batch[i].n_id.numpy()))
node_type = 'SNP'
edge2weight_l1 = {}
edge2weight_l2 = {}
edge_type_node = [i for i,j in batch.edge_index_dict.items() if i[2] == node_type]
edge_type_node_len = [j.shape[1] for i,j in batch.edge_index_dict.items() if i[2] == node_type]
for idx, edge_type in enumerate(edge_type_node):
edge2weight_l1[edge_type] = attention_all_layers[0][node_type][idx]
assert edge_type_node_len[idx] == edge2weight_l1[edge_type][0].shape[1]
edge2weight_l2[edge_type] = attention_all_layers[1][node_type][idx]
assert edge_type_node_len[idx] == edge2weight_l2[edge_type][0].shape[1]
edge2weight_l1[edge_type][0][0] = torch.LongTensor([idx2n_id[edge_type[0]][ent] for ent in edge2weight_l1[edge_type][0][0].detach().cpu().numpy()])
edge2weight_l1[edge_type][0][1] = torch.LongTensor([idx2n_id[edge_type[2]][ent] for ent in edge2weight_l1[edge_type][0][1].detach().cpu().numpy()])
return edge2weight_l1, edge2weight_l2
def get_fields(all_field_ids, main_data_path):
headers = pd.read_csv(main_data_path, nrows = 1).columns
relevant_headers = [i for i, header in enumerate(headers) if header == 'eid' or \
any([header.startswith('%d-' % field_id) for field_id in all_field_ids])]
return pd.read_csv(main_data_path, usecols = relevant_headers)
def get_row_last_values(df):
result = pd.Series(np.nan, index = df.index)
for column in df.columns[::-1]:
result = result.where(pd.notnull(result), df[column])
return result
def remove_kinships(eid, verbose = True):
'''
Determines which samples need to be removed such that the remaining samples will have no kinship connections whatsoever (according to the
kinship table provided by the UKBB). In order to determine that, kinship groups will first be determined (@see get_kinship_groups), and
only one sample will remain within each of the groups. For the sake of determinism, the sample with the lowest eid will be selected within
each kinship group, and the rest will be discarded.
@param eid (pd.Series): A series whose values are UKBB sample IDs, from which kinships should be removed.
@param verbose (bool): Whether to log details of the operation of this function.
@return: A mask of samples to keep (pd.Series with index corresponding to the eid input, and boolean values).
'''
all_eids = set(eid)
kinship_groups = get_kinship_groups()
relevant_kinship_groups = [kinship_group & all_eids for kinship_group in kinship_groups]
relevant_kinship_groups = [kinship_group for kinship_group in relevant_kinship_groups if len(kinship_group) >= 2]
unchosen_kinship_representatives = set.union(*[set(sorted(kinship_group)[1:]) for kinship_group in relevant_kinship_groups])
no_kinship_mask = ~eid.isin(unchosen_kinship_representatives)
if verbose:
print_sys(('Constructed %d kinship groups (%d samples), of which %d (%d samples) are relevant for the dataset (i.e. containing at least 2 ' + \
'samples in the dataset). Picking only one representative of each group and removing the %d other samples in those groups ' + \
'has reduced the dataset from %d to %d samples.') % (len(kinship_groups), len(set.union(*kinship_groups)), \
len(relevant_kinship_groups), len(set.union(*relevant_kinship_groups)), len(unchosen_kinship_representatives), len(no_kinship_mask), \
no_kinship_mask.sum()))
return no_kinship_mask
def get_kinship_groups():
'''
Uses the kinship table provided by the UKBB (as specified by the KINSHIP_TABLE_FILE_PATH configuration) in order to determine kinship groups.
Each kinship group is a connected component of samples in the graph of kinships (where each node is a UKBB sample, and an edge exists between
each pair of samples reported in the kinship table).
@return: A list of sets of strings (the strings are the sample IDs, i.e. eid). Each set of samples is a kinship group.
'''
kinship_table = pd.read_csv(kinship_path, sep = ' ')
kinship_ids = np.array(sorted(set(kinship_table['ID1']) | set(kinship_table['ID2'])))
n_kinship_ids = len(kinship_ids)
kinship_id_to_index = pd.Series(np.arange(n_kinship_ids), index = kinship_ids)
kinship_index1 = kinship_table['ID1'].map(kinship_id_to_index).values
kinship_index2 = kinship_table['ID2'].map(kinship_id_to_index).values
symmetric_kinship_index1 = np.concatenate([kinship_index1, kinship_index2])
symmetric_kinship_index2 = np.concatenate([kinship_index2, kinship_index1])
kinship_matrix = csr_matrix((np.ones(len(symmetric_kinship_index1), dtype = bool), (symmetric_kinship_index1, \
symmetric_kinship_index2)), shape = (n_kinship_ids, n_kinship_ids), dtype = bool)
_, kinship_labels = connected_components(kinship_matrix, directed = False)
kinship_labels = pd.Series(kinship_labels, index = kinship_ids)
return [set(group_kinship_labels.index) for _, group_kinship_labels in kinship_labels.groupby(kinship_labels)]
def save_dict(path, obj):
"""save an object to a pickle file
Args:
path (str): the path to save the pickle file
obj (object): any file
"""
with open(path, 'wb') as f:
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
def load_dict(path):
"""load an object from a path
Args:
path (str): the path where the pickle file locates
Returns:
object: loaded pickle file
"""
with open(path, 'rb') as f:
return pickle.load(f)
def save_model(model, config, path_dir):
if not os.path.exists(path_dir):
os.makedirs(path_dir)
torch.save(model.state_dict(), path_dir + '/model.pt')
save_dict(path_dir + '/config.pkl', config)
def load_pretrained(path, model):
state_dict = torch.load(os.path.join(path, 'model.pt'), map_location = torch.device('cpu'))
# to support training from multi-gpus data-parallel:
if next(iter(state_dict))[:7] == 'module.':
# the pretrained model is from data-parallel module
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
state_dict = new_state_dict
model.load_state_dict(state_dict)
return model
def get_args(path):
return load_dict(os.path.join(path, 'config.pkl'))
def print_sys(s):
"""system print
Args:
s (str): the string to print
"""
print(s, flush = True, file = sys.stderr)
def get_plink_QC_fam():
fam_path = '/dfs/project/datasets/20220524-ukbiobank/data/genetics/ukb_all.fam'
data = ukbb_cohort(main_data_path, cohort_data_path, withdraw_path, keep_relatives=True).cohort
df_fam = pd.read_csv(fam_path, sep = ' ', header = None)
df_fam[df_fam[0].isin(data)].reset_index(drop = True).to_csv('/dfs/project/datasets/20220524-ukbiobank/data/cohort/qc_cohort.txt', header = None, index = False, sep = ' ')
def get_plink_no_rel_fam():
fam_path = '/dfs/project/datasets/20220524-ukbiobank/data/genetics/ukb_all.fam'
data = ukbb_cohort(main_data_path, cohort_data_path, withdraw_path, keep_relatives=False).cohort
df_fam = pd.read_csv(fam_path, sep = ' ', header = None)
df_fam[df_fam[0].isin(data)].reset_index(drop = True).to_csv('/dfs/project/datasets/20220524-ukbiobank/data/cohort/no_rel.fam', header = None, index = False, sep = ' ')
def get_precision_recall_at_N(res, hits_all, input_dim, N, column_rsid = 'ID', thres = 5e-8):
eval_dict = {}
hits_sub = res[res.P < thres][column_rsid].values
p_sorted = res.sort_values('P')[column_rsid].values
for K in range(1, input_dim, 10000):
topK_true = np.intersect1d(hits_all, p_sorted[:K])
recall = len(topK_true)/len(hits_all)
if recall > N:
break
for K in range(K-10000, K, 1000):
topK_true = np.intersect1d(hits_all, p_sorted[:K])
recall = len(topK_true)/len(hits_all)
if recall > N:
break
for K in range(K-1000, K, 100):
topK_true = np.intersect1d(hits_all, p_sorted[:K])
recall = len(topK_true)/len(hits_all)
if recall > N:
break
for K in range(K-100, K, 10):
topK_true = np.intersect1d(hits_all, p_sorted[:K])
recall = len(topK_true)/len(hits_all)
if recall > N:
break
for K in range(K-10, K):
topK_true = np.intersect1d(hits_all, p_sorted[:K])
recall = len(topK_true)/len(hits_all)
if recall > N:
break
print_sys('PR@' + str(int(N * 100)) + ' is achieved when K = ' + str(K))
eval_dict['PR@' + str(int(N * 100)) + '_K'] = K
topK_true = [1 if i in hits_all else 0 for i in p_sorted[:K]]
precision = precision_score(topK_true, [1] * K)
eval_dict['PR@' + str(int(N * 100))] = precision
return eval_dict
def get_gwas_results(res, hits_all, input_dim, column_rsid = 'ID', thres = 5e-8):
eval_dict = {}
hits_sub = res[res.P < thres][column_rsid].values
eval_dict['overall_recall'] = len(np.intersect1d(hits_sub, hits_all))/len(hits_all)
if len(hits_sub) == 0:
eval_dict['overall_precision'] = 0
eval_dict['overall_f1'] = 0
else:
eval_dict['overall_precision'] = len(np.intersect1d(hits_sub, hits_all))/len(hits_sub)
eval_dict['overall_f1'] = 2 * eval_dict['overall_recall'] * eval_dict['overall_precision']/(eval_dict['overall_recall'] + eval_dict['overall_precision'])
for K in [100, 500, 1000, 5000]:
topK_true = [1 if i in hits_all else 0 for i in res.sort_values('P').iloc[:K][column_rsid].values]
eval_dict['precision_' + str(K)] = precision_score(topK_true, [1] * K)
eval_dict['recall_' + str(K)] = sum(topK_true)/len(hits_all)
eval_dict.update(get_precision_recall_at_N(res, hits_all, input_dim, 0.8, column_rsid, thres))
eval_dict.update(get_precision_recall_at_N(res, hits_all, input_dim, 0.9, column_rsid, thres))
eval_dict.update(get_precision_recall_at_N(res, hits_all, input_dim, 0.95, column_rsid, thres))
return eval_dict
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return array[idx]
def get_preds(logits, multi_label):
if multi_label:
preds = (logits.sigmoid() > 0.5).float()
elif logits.shape[1] > 1: # multi-class
preds = logits.argmax(dim=1).float()
else: # binary
preds = (logits.sigmoid() > 0.5).float()
return preds
def process_data(data, use_edge_attr):
if not use_edge_attr:
data.edge_attr = None
if data.get('edge_label', None) is None:
data.edge_label = {i: torch.zeros(j.shape[1]) for i, j in data.edge_index_dict.items()}
return data
def load_checkpoint(model, model_dir, model_name, map_location=None):
checkpoint = torch.load(model_dir / (model_name + '.pt'), map_location=map_location)
model.load_state_dict(checkpoint['model_state_dict'])
def save_checkpoint(model, model_dir, model_name):
torch.save({'model_state_dict': model.state_dict()}, model_dir / (model_name + '.pt'))
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def flatten(list_of_lists):
return [item for sublist in list_of_lists for item in sublist]
def find_connected_components_details(edges):
graph = {}
for u, v in edges:
if u not in graph:
graph[u] = []
if v not in graph:
graph[v] = []
graph[u].append(v)
graph[v].append(u)
def dfs(vertex):
visited_nodes = set()
visited_edges = set()
stack = [vertex]
while stack:
current = stack.pop()
if current not in visited_nodes:
visited_nodes.add(current)
for neighbor in graph[current]:
stack.append(neighbor)
if (current, neighbor) not in visited_edges and (neighbor, current) not in visited_edges:
visited_edges.add((current, neighbor))
return list(visited_nodes), list(visited_edges)
visited = set()
components = []
for vertex in tqdm(graph):
if vertex not in visited:
nodes, edges = dfs(vertex)
components.append({
'nodes': nodes,
'edges': edges
})
visited.update(nodes)
return components
def flatten(lst):
return [item for sublist in lst for item in sublist]
def ldsc_regression_weights(ld, w_ld, N, M, hsq, intercept=None, ii=None):
'''
Regression weights.
Parameters
----------
ld : np.matrix with shape (n_snp, 1)
LD Scores (non-partitioned).
w_ld : np.matrix with shape (n_snp, 1)
LD Scores (non-partitioned) computed with sum r^2 taken over only those SNPs included
in the regression.
N : np.matrix of ints > 0 with shape (n_snp, 1)
Number of individuals sampled for each SNP.
M : float > 0
Number of SNPs used for estimating LD Score (need not equal number of SNPs included in
the regression).
hsq : float in [0,1]
Heritability estimate.
Returns
-------
w : np.matrix with shape (n_snp, 1)
Regression weights. Approx equal to reciprocal of conditional variance function.
'''
M = float(M)
if intercept is None:
intercept = 1
hsq = max(hsq, 0.0)
hsq = min(hsq, 1.0)
ld = np.fmax(ld, 1.0)
w_ld = np.fmax(w_ld, 1.0)
c = hsq * N / M
het_w = 1.0 / (2 * np.square(intercept + np.multiply(c, ld)))
oc_w = 1.0 / w_ld
w = np.multiply(het_w, oc_w)
return w
def get_network_weight(run, data):
model = run.best_model
model = model.to('cpu')
graph_data = data.data.to('cpu')
x_dict, edge_index_dict = graph_data.x_dict, graph_data.edge_index_dict
attention_all_layers = []
print('Retrieving weights...')
x_dict['SNP'] = model.snp_feat_mlp(x_dict['SNP'])
x_dict['Gene'] = model.gene_feat_mlp(x_dict['Gene'])
x_dict['CellularComponent'] = model.go_feat_mlp(x_dict['CellularComponent'])
x_dict['BiologicalProcess'] = model.go_feat_mlp(x_dict['BiologicalProcess'])
x_dict['MolecularFunction'] = model.go_feat_mlp(x_dict['MolecularFunction'])
for conv in model.convs:
x_dict = conv(x_dict, edge_index_dict,
return_attention_weights_dict = dict(zip(list(graph_data.edge_index_dict.keys()),
[True] * len(list(graph_data.edge_index_dict.keys())))),
return_raw_attention_weights_dict = dict(zip(list(graph_data.edge_index_dict.keys()),
[True] * len(list(graph_data.edge_index_dict.keys())))),
)
attention_layer = {i: j[1] for i,j in x_dict.items()}
attention_all_layers.append(attention_layer)
x_dict = {i: j[0] for i,j in x_dict.items()}
layer2rel2att = {
'l1': {},
'l2': {}
}
print('Aggregating across node types...')
for node_type in graph_data.x_dict.keys():
edge_type_node = [i for i,j in graph_data.edge_index_dict.items() if i[2] == node_type]
for idx, i in enumerate(attention_all_layers[0][node_type]):
layer2rel2att['l1'][edge_type_node[idx]] = np.vstack((i[0].detach().cpu().numpy(), i[1].detach().cpu().numpy().reshape(-1)))
for idx, i in enumerate(attention_all_layers[1][node_type]):
layer2rel2att['l2'][edge_type_node[idx]] = np.vstack((i[0].detach().cpu().numpy(), i[1].detach().cpu().numpy().reshape(-1)))
df_val_all = pd.DataFrame()
for rel, value in layer2rel2att['l1'].items():
df_val = pd.DataFrame(value).T.rename(columns = {0: 'h_idx', 1: 't_idx', 2: 'weight'})
df_val['h_type'] = rel[0]
df_val['rel_type'] = rel[1]
df_val['t_type'] = rel[2]
df_val['layer'] = 'l1'
df_val_all = df_val_all.append(df_val)
for rel, value in layer2rel2att['l2'].items():
df_val = pd.DataFrame(value).T.rename(columns = {0: 'h_idx', 1: 't_idx', 2: 'weight'})
df_val['h_type'] = rel[0]
df_val['rel_type'] = rel[1]
df_val['t_type'] = rel[2]
df_val['layer'] = 'l2'
df_val_all = df_val_all.append(df_val)
df_val_all = df_val_all.drop_duplicates(['h_idx', 't_idx', 'rel_type', 'layer'])
return df_val_all
def get_local_interpretation(query_snp, v2g, g2g, g2p, g2v, id2idx, K_neighbors):
try:
snp2gene_around_snp = v2g[v2g.t_idx == id2idx['SNP'][query_snp]]
snp2gene_around_snp = snp2gene_around_snp.sort_values('importance')[::-1]
gene_hit = snp2gene_around_snp.iloc[:K_neighbors]
gene_hit.loc[:, 'rel_type'] = gene_hit.rel_type.apply(lambda x: x[4:])
g2g_focal = pd.DataFrame()
for gene in gene_hit.h_id.values:
g2g_focal = g2g_focal.append(g2g[g2g.t_id == gene].sort_values('importance')[::-1].iloc[:K_neighbors])
g2g_focal.loc[:,'rel_type'] = g2g_focal.rel_type.apply(lambda x: x.split('-')[1])
g2p_focal = pd.DataFrame()
for gene in gene_hit.h_id.values:
g2p_focal = g2p_focal.append(g2p[g2p.t_id == gene].sort_values('importance')[::-1].iloc[:K_neighbors])
g2p_focal.loc[:,'rel_type'] = g2p_focal.rel_type.apply(lambda x: x.split('-')[1])
g2v_focal = pd.DataFrame()
for gene in gene_hit.h_id.values:
g2v_focal = g2v_focal.append(g2v[g2v.t_id == gene].sort_values('importance')[::-1].iloc[:K_neighbors])
local_neighborhood_around_snp = pd.concat((gene_hit, g2g_focal, g2p_focal, g2v_focal))
local_neighborhood_around_snp.loc[:,'QUERY_SNP'] = query_snp
return local_neighborhood_around_snp
except:
return None
def generate_viz(run, df_network, data_path, variant_threshold = 5e-8,
magma_path = None, magma_threshold = 0.05, program_threshold = 0.05,
K_neighbors = 3, num_cpus = 1):
gwas = run.kgwas_res
idx2id = run.data.idx2id
id2idx = run.data.id2idx
print('Start generating disease critical network...')
gene_sets = load_dict(os.path.join(data_path, 'misc_data/gene_set_bp.pkl'))
with open(os.path.join(data_path, 'misc_data/go2name.pkl'), 'rb') as f:
go2name = pickle.load(f)
df_network = df_network[~df_network.rel_type.isin(['TSS', 'rev_TSS'])]
snp2genes = df_network[(df_network.t_type == 'SNP')
& (df_network.h_type == 'Gene')]
gene2gene = df_network[(df_network.t_type == 'Gene')
& (df_network.h_type == 'Gene')]
gene2go = df_network[(df_network.t_type == 'Gene')
& (df_network.h_type.isin(['BiologicalProcess']))]
if 'SNP' not in gwas.columns.values:
gwas.loc[:, 'SNP'] = gwas['ID']
hit_snps = gwas[gwas.P < 5e-8].SNP.values
hit_snps_idx = [id2idx['SNP'][i] for i in hit_snps]
if magma_path is not None:
# use magma genes and GSEA programs
print('Using MAGMA genes to filter...')
gwas_gene = pd.read_csv(magma_path, sep = '\s+')
id2gene = dict(pd.read_csv(os.path.join(data_path, 'misc_data/NCBI37.3.gene.loc'), sep = '\t', header = None)[[0,5]].values)
gwas_gene.loc[:,'GENE'] = gwas_gene['GENE'].apply(lambda x: id2gene[x])
import statsmodels.api as sm
p_values = gwas_gene['P']
corrected_p_values = sm.stats.multipletests(p_values, alpha=magma_threshold, method='bonferroni')[1]
gwas_gene.loc[:,'corrected_p_value'] = corrected_p_values
df_gene_hits = gwas_gene[gwas_gene['corrected_p_value'] < magma_threshold]
rnk = df_gene_hits[['GENE', 'ZSTAT']].set_index('GENE')
gene_hit_idx = [id2idx['Gene'][i] for i in df_gene_hits.GENE.values if i in id2idx['Gene']]
try:
gsea_results_BP = gp.prerank(rnk=rnk, gene_sets=gene_sets,
outdir=None, permutation_num=100,
min_size=2, max_size=1000, seed = 42)
gsea_results_BP = gsea_results_BP.res2d
go_hits = gsea_results_BP[gsea_results_BP['NOM p-val'] < program_threshold].Term.values
if len(go_hits) <= 5:
go_hits = gsea_results_BP.sort_values('NOM p-val')[:5].Term.values
go_hits_idx = [id2idx['BiologicalProcess'][x] for x in go_hits]
print('Using GSEA gene programs to filter...')
except:
print('No significant gene programs found...')
go_hits_idx = []
else:
# use all genes and gene programs
print('No filters... Using all genes and gene programs...')
gene_hit_idx = list(id2idx['Gene'].values())
go_hits_idx = list(id2idx['BiologicalProcess'].values())
snp2genes_hit = snp2genes[snp2genes.t_idx.isin(hit_snps_idx) & snp2genes.h_idx.isin(gene_hit_idx)]
rel2mean = snp2genes_hit.groupby('rel_type').weight.mean().reset_index().rename(columns = {'weight': 'rel_type_mean'})
rel2std = snp2genes_hit.groupby('rel_type').weight.agg(np.std).reset_index().rename(columns = {'weight': 'rel_type_std'})
snp2genes_hit = snp2genes_hit.merge(rel2std)
snp2genes_hit = snp2genes_hit.merge(rel2mean)
snp2genes_hit.loc[:,'z_rel'] = (snp2genes_hit['weight'] - snp2genes_hit['rel_type_mean'])/snp2genes_hit['rel_type_std']
v2g_hit = snp2genes_hit.groupby(['h_idx', 't_idx']).z_rel.max().reset_index().rename(columns={'z_rel': 'importance'})
v2g_hit_with_rel_type = pd.merge(v2g_hit, snp2genes_hit, left_on=['h_idx', 't_idx', 'importance'], right_on=['h_idx', 't_idx', 'z_rel'], how='left')
v2g_hit = v2g_hit_with_rel_type[['h_idx', 't_idx', 'importance', 'h_type', 't_type', 'rel_type']]
v2g_hit.loc[:,'rel_type'] = v2g_hit.rel_type.apply(lambda x: x[4:])
v2g_hit.loc[:,'Category'] = 'V2G'
v2g_hit.loc[:,'h_id'] = v2g_hit['h_idx'].apply(lambda x: idx2id['Gene'][x])
v2g_hit.loc[:,'t_id'] = v2g_hit['t_idx'].apply(lambda x: idx2id['SNP'][x])
gene2gene_hit = gene2gene[gene2gene.h_idx.isin(gene_hit_idx) & gene2gene.t_idx.isin(gene_hit_idx)]
rel2mean = gene2gene_hit.groupby('rel_type').weight.mean().reset_index().rename(columns = {'weight': 'rel_type_mean'})
rel2std = gene2gene_hit.groupby('rel_type').weight.agg(np.std).reset_index().rename(columns = {'weight': 'rel_type_std'})
gene2gene_hit = gene2gene_hit.merge(rel2std)
gene2gene_hit = gene2gene_hit.merge(rel2mean)
gene2gene_hit.loc[:,'z_rel'] = (gene2gene_hit['weight'] - gene2gene_hit['rel_type_mean'])/gene2gene_hit['rel_type_std']
g2g_hit = gene2gene_hit.groupby(['h_idx', 't_idx']).z_rel.max().reset_index().rename(columns={'z_rel': 'importance'})
g2g_hit_with_rel_type = pd.merge(g2g_hit, gene2gene_hit, left_on=['h_idx', 't_idx', 'importance'], right_on=['h_idx', 't_idx', 'z_rel'], how='left')
g2g_hit = g2g_hit_with_rel_type[['h_idx', 't_idx', 'importance', 'h_type', 't_type', 'rel_type']]
g2g_hit.loc[:,'rel_type'] = g2g_hit.rel_type.apply(lambda x: x.split('-')[1])
g2g_hit.loc[:,'Category'] = 'G2G'
g2g_hit.loc[:,'h_id'] = g2g_hit['h_idx'].apply(lambda x: idx2id['Gene'][x])
g2g_hit.loc[:,'t_id'] = g2g_hit['t_idx'].apply(lambda x: idx2id['Gene'][x])
gene2program_hit = gene2go[gene2go.t_idx.isin(gene_hit_idx) & gene2go.h_idx.isin(go_hits_idx)]
rel2mean = gene2program_hit.groupby('rel_type').weight.mean().reset_index().rename(columns = {'weight': 'rel_type_mean'})
rel2std = gene2program_hit.groupby('rel_type').weight.agg(np.std).reset_index().rename(columns = {'weight': 'rel_type_std'})
gene2program_hit = gene2program_hit.merge(rel2std)
gene2program_hit = gene2program_hit.merge(rel2mean)
gene2program_hit.loc[:,'z_rel'] = (gene2program_hit['weight'] - gene2program_hit['rel_type_mean'])/gene2program_hit['rel_type_std']
g2p_hit = gene2program_hit.groupby(['h_idx', 't_idx']).z_rel.max().reset_index().rename(columns={'z_rel': 'importance'})
g2p_hit_with_rel_type = pd.merge(g2p_hit, gene2program_hit, left_on=['h_idx', 't_idx', 'importance'], right_on=['h_idx', 't_idx', 'z_rel'], how='left')
g2p_hit = g2p_hit_with_rel_type[['h_idx', 't_idx', 'importance', 'h_type', 't_type', 'rel_type']]
g2p_hit.loc[:,'rel_type'] = g2p_hit.rel_type.apply(lambda x: x.split('-')[1])
g2p_hit.loc[:,'Category'] = 'G2P'
g2p_hit.loc[:,'h_id'] = g2p_hit['h_idx'].apply(lambda x: idx2id['BiologicalProcess'][x])
g2p_hit.loc[:,'t_id'] = g2p_hit['t_idx'].apply(lambda x: idx2id['Gene'][x])
g2p_hit.loc[:,'h_id'] = g2p_hit.h_id.apply(lambda x: go2name[x].capitalize() if x in go2name else x)
disease_critical_network = pd.concat((v2g_hit, g2g_hit, g2p_hit)).reset_index(drop = True)
print('Disease critical network finished generating...')
print('Generating variant interpretation networks...')
#### get for variant interpretation -> since we are looking at top K neighbors, we don't filter
# V2G
rel2mean = snp2genes_hit.groupby('rel_type').weight.mean().reset_index().rename(columns = {'weight': 'rel_type_mean'})
rel2std = snp2genes_hit.groupby('rel_type').weight.agg(np.std).reset_index().rename(columns = {'weight': 'rel_type_std'})
snp2genes = snp2genes.merge(rel2std)
snp2genes = snp2genes.merge(rel2mean)
snp2genes.loc[:,'z_rel'] = (snp2genes['weight'] - snp2genes['rel_type_mean'])/snp2genes['rel_type_std']
snp2genes = snp2genes.rename(columns={'z_rel': 'importance'})
v2g = snp2genes.groupby(['h_idx', 't_idx']).importance.max().reset_index()
v2g_with_rel_type = pd.merge(v2g, snp2genes, left_on=['h_idx', 't_idx', 'importance'], right_on=['h_idx', 't_idx', 'importance'], how='left')
v2g = v2g_with_rel_type[['h_idx', 't_idx', 'importance', 'h_type', 't_type', 'rel_type']]
v2g.loc[:,'h_id'] = v2g['h_idx'].apply(lambda x: idx2id['Gene'][x])
v2g.loc[:,'t_id'] = v2g['t_idx'].apply(lambda x: idx2id['SNP'][x])
## G2G
rel2mean = gene2gene_hit.groupby('rel_type').weight.mean().reset_index().rename(columns = {'weight': 'rel_type_mean'})
rel2std = gene2gene_hit.groupby('rel_type').weight.agg(np.std).reset_index().rename(columns = {'weight': 'rel_type_std'})
gene2gene = gene2gene.merge(rel2std)
gene2gene = gene2gene.merge(rel2mean)
gene2gene.loc[:,'z_rel'] = (gene2gene['weight'] - gene2gene['rel_type_mean'])/gene2gene['rel_type_std']
gene2gene = gene2gene.rename(columns={'z_rel': 'importance'})
g2g = gene2gene.groupby(['h_idx', 't_idx']).importance.max().reset_index()
g2g_with_rel_type = pd.merge(g2g, gene2gene, left_on=['h_idx', 't_idx', 'importance'], right_on=['h_idx', 't_idx', 'importance'], how='left')
g2g = g2g_with_rel_type[['h_idx', 't_idx', 'importance', 'h_type', 't_type', 'rel_type']]
g2g.loc[:,'h_id'] = g2g['h_idx'].apply(lambda x: idx2id['Gene'][x])
g2g.loc[:,'t_id'] = g2g['t_idx'].apply(lambda x: idx2id['Gene'][x])
g2g = g2g[g2g.h_idx != g2g.t_idx]
## G2P
rel2mean = gene2program_hit.groupby('rel_type').weight.mean().reset_index().rename(columns = {'weight': 'rel_type_mean'})
rel2std = gene2program_hit.groupby('rel_type').weight.agg(np.std).reset_index().rename(columns = {'weight': 'rel_type_std'})
gene2go = gene2go.merge(rel2std)
gene2go = gene2go.merge(rel2mean)
gene2go.loc[:,'z_rel'] = (gene2go['weight'] - gene2go['rel_type_mean'])/gene2go['rel_type_std']
gene2go = gene2go.rename(columns={'z_rel': 'importance'})
g2p = gene2go.groupby(['h_idx', 't_idx']).importance.max().reset_index()
g2p_with_rel_type = pd.merge(g2p, gene2go, left_on=['h_idx', 't_idx', 'importance'], right_on=['h_idx', 't_idx', 'importance'], how='left')
g2p = g2p_with_rel_type[['h_idx', 't_idx', 'importance', 'h_type', 't_type', 'rel_type']]
g2p.loc[:,'h_id'] = g2p['h_idx'].apply(lambda x: go2name[idx2id['BiologicalProcess'][x]].capitalize() if idx2id['BiologicalProcess'][x] in go2name else idx2id['BiologicalProcess'][x])
g2p.loc[:,'t_id'] = g2p['t_idx'].apply(lambda x: idx2id['Gene'][x])
## G2V
gene2snp = df_network[(df_network.h_type == 'SNP')
& (df_network.t_type == 'Gene')]
gene2snp_hit = gene2snp[gene2snp.h_idx.isin(hit_snps_idx) & gene2snp.t_idx.isin(gene_hit_idx)]
rel2mean = gene2snp_hit.groupby('rel_type').weight.mean().reset_index().rename(columns = {'weight': 'rel_type_mean'})
rel2std = gene2snp_hit.groupby('rel_type').weight.agg(np.std).reset_index().rename(columns = {'weight': 'rel_type_std'})
gene2snp = gene2snp.merge(rel2std)
gene2snp = gene2snp.merge(rel2mean)
gene2snp.loc[:,'z_rel'] = (gene2snp['weight'] - gene2snp['rel_type_mean'])/gene2snp['rel_type_std']
gene2snp = gene2snp.rename(columns={'z_rel': 'importance'})
g2v = gene2snp.groupby(['h_idx', 't_idx']).importance.max().reset_index()
g2v_with_rel_type = pd.merge(g2v, gene2snp, left_on=['h_idx', 't_idx', 'importance'], right_on=['h_idx', 't_idx', 'importance'], how='left')
g2v = g2v_with_rel_type[['h_idx', 't_idx', 'importance', 'h_type', 't_type', 'rel_type']]
g2v.loc[:,'h_id'] = g2v['h_idx'].apply(lambda x: idx2id['SNP'][x])
g2v.loc[:,'t_id'] = g2v['t_idx'].apply(lambda x: idx2id['Gene'][x])
print('Number of hit snps: ', len(hit_snps))
process_func = partial(get_local_interpretation, v2g=v2g, g2g=g2g, g2p=g2p, g2v=g2v, id2idx=id2idx, K_neighbors=K_neighbors)
with Pool(num_cpus) as p:
res = list(tqdm(p.imap(process_func, hit_snps), total=len(hit_snps)))
try:
df_variant_interpretation = pd.concat([i for i in res if i is not None])
except:
df_variant_interpretation = pd.DataFrame()
return df_variant_interpretation, disease_critical_network