[1a700d]: / kgwas / data.py

Download this file

426 lines (358 with data), 22.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import os, sys
from scipy.sparse import csr_matrix
from scipy.sparse.csgraph import connected_components
from sklearn.preprocessing import OneHotEncoder
import pandas as pd
import numpy as np
import pickle
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.sampler import WeightedRandomSampler
import torch
from .params import main_data_path, cohort_data_path, kinship_path, withdraw_path, fam_path
from .utils import get_fields, get_row_last_values, remove_kinships, save_dict, load_dict, print_sys
class ukbb_cohort:
def __init__(self, main_data_path, cohort_data_path, withdraw_path, keep_relatives = False):
self.keep_relatives = keep_relatives
self.cohort_data_path = cohort_data_path
self.main_data_path = main_data_path
if keep_relatives:
cohort_path = os.path.join(cohort_data_path, 'cohort_with_relatives.pkl')
else:
cohort_path = os.path.join(cohort_data_path, 'cohort_no_relatives.pkl')
if not os.path.exists(cohort_path):
print_sys('construct from scratch...')
'''
exclusions:
the original uk biobank nature paper supplementary S 3.4:
22006: Genetic ethnic grouping -> to retain only white british ancestry
https://www.frontiersin.org/articles/10.3389/fgene.2022.866042/full
22018: genetic relatedness exclusions
22019: sex chromosome aneuploidy
31 <-> 22001: mismatch between self-reported sex and genetically determined sex
22010: recommended genomic analysis exclusions, signs of insufficient data quality
(optional) further remove relatives based on KING relative scores, choose the first one in relative group
remove the list of eids who do not want to be in the study anymore
'''
all_field_ids = [22006, 22018, 22019, 22001, 22010, 31]
df_main = get_fields(all_field_ids, main_data_path)
cur_size = len(df_main)
print_sys('Total sample size: ' + str(cur_size))
df_main = df_main[df_main['22006-0.0'] == 1]
print_sys('Keeping only white british ancestry (ID: 22006), cutting from ' + str(cur_size) + ' to ' + str(len(df_main)))
cur_size = len(df_main)
df_main = df_main[df_main['22018-0.0'].isnull()]
print_sys('Removing genetics related samples (ID: 22018), cutting from ' + str(cur_size) + ' to ' + str(len(df_main)))
cur_size = len(df_main)
df_main = df_main[df_main['22019-0.0'].isnull()]
print_sys('Removing sex chromosome aneuploidy (ID: 22019), cutting from ' + str(cur_size) + ' to ' + str(len(df_main)))
cur_size = len(df_main)
df_main = df_main[df_main['31-0.0'] == df_main['22001-0.0']]
print_sys('Removing samples with mismatched self-reported sex and genetic determined sex (ID: 31 <-> 22001), cutting from ' + str(cur_size) + ' to ' + str(len(df_main)))
cur_size = len(df_main)
df_main = df_main[df_main['22010-0.0'].isnull()]
print_sys('Removing samples with genomic data quality (ID: 22010), cutting from ' + str(cur_size) + ' to ' + str(len(df_main)))
cur_size = len(df_main)
save_dict(os.path.join(cohort_data_path, 'cohort_with_relatives.pkl'), df_main.eid.values)
kinship_mask = remove_kinships(df_main.eid)
df_main = df_main[kinship_mask]
save_dict(os.path.join(cohort_data_path, 'cohort_no_relatives.pkl'), df_main.eid.values)
else:
print_sys('Found local copy...')
self.cohort = load_dict(cohort_path)
print_sys('There are ' + str(len(self.cohort)) + ' samples!')
if keep_relatives:
self.no_rel_eid = load_dict(os.path.join(cohort_data_path, 'cohort_no_relatives.pkl'))
if os.path.exists(withdraw_path):
## todo: when there is a withdraw file, implement this...
pass
def get_covariates(self, to_plink = False, plink_num_pca = 15, return_full = False, plink_filter = False):
'''
covariates:
31: sex
21003: Age when attended assessment centre
22009: pca
54: assessment center
batch from params.fam_path file
'''
covar_path = os.path.join(self.cohort_data_path, 'covariates_all.pkl')
if os.path.exists(covar_path):
print_sys('Found local copy...')
self.covar = load_dict(covar_path)
else:
print_sys('construct co-variates from scratch...')
df_covar = get_fields([31, 54, 21003, 22009], self.main_data_path)
column_name_map = {'22009-0.' + str(i): 'pca ' + str(i) for i in range(1, 41)}
column_name_map['31-0.0'] = 'sex'
column_name_map['21003-0.0'] = 'age'
column_name_map['54-0.0'] = 'assessment_center'
self.covar = df_covar.rename(columns = column_name_map)
enc = OneHotEncoder(handle_unknown='ignore')
enc.fit(self.covar['assessment_center'].unique().reshape(-1,1))
center_array = enc.transform(self.covar['assessment_center'].values.reshape(-1,1)).toarray()
center_one_hot = pd.DataFrame(center_array).astype('int').rename(columns = dict(zip(range(22), ['center_' + str(i) for i in range(22)])))
self.covar = self.covar.drop(['21003-1.0', '21003-2.0', '21003-3.0', 'assessment_center', '54-1.0', '54-2.0', '54-3.0'], axis = 1)
self.covar = self.covar.join(center_one_hot)
df_fam = pd.read_csv(fam_path)
enc = OneHotEncoder(handle_unknown='ignore')
enc.fit(df_fam.trait.unique().reshape(-1,1))
batch_one_hot = enc.transform(df_fam['trait'].values.reshape(-1,1)).toarray()
batch_num = batch_one_hot.shape[1]
id2batch = dict(zip(df_fam.fid.values, batch_one_hot.astype(int)))
df_batch = pd.DataFrame(np.stack(self.covar['eid'].apply(lambda x: id2batch[x] if x in id2batch else np.zeros(batch_one_hot.shape[1]).astype(int)).values)).rename(columns = dict(zip(range(batch_num), ['batch_' + str(i) for i in range(batch_num)])))
self.covar = self.covar.join(df_batch)
save_dict(covar_path, self.covar)
print_sys('Done! Saving...')
if not to_plink:
if return_full:
return self.covar.reset_index(drop = True)
else:
return self.covar[self.covar.eid.isin(self.cohort)].reset_index(drop = True)
else:
plink_path = os.path.join(self.cohort_data_path, 'covar_pca' + str(plink_num_pca) + '_all_real_value')
if plink_filter:
plink_path += '_null_removed'
plink_path += '.txt'
if not os.path.exists(plink_path):
pca_columns = [i for i in self.covar.columns.values if (i[:3]=='pca') and int(i.split()[-1]) <= plink_num_pca]
#center_one_hot_columns = ['center_' + str(i) for i in range(22)]
#batch_columns = ['batch_' + str(i) for i in range(batch_num)]
#self.covar[['eid', 'eid', 'age', 'sex'] + pca_columns + center_one_hot_columns + batch_columns].to_csv(plink_path, header=None, index=None, sep=' ')
center = np.argmax(self.covar.loc[:, self.covar.columns.str.contains('center')].values, axis = 1)
batch = np.argmax(self.covar.loc[:, self.covar.columns.str.contains('batch')].values, axis = 1)
self.covar = self.covar.iloc[:, :43]
self.covar['assessment_center'] = center
self.covar['batch'] = batch
if plink_filter:
self.covar = self.covar[self.covar.eid.isin(self.cohort)].reset_index(drop = True)
self.covar[['eid', 'eid', 'age', 'sex', 'assessment_center', 'batch'] + pca_columns].to_csv(plink_path, header=None, index=None, sep=' ')
self.covar_plink = pd.read_csv(plink_path, header = None, sep = ' ')
return self.covar_plink
def get_external_traits(self, trait_name, to_plink = False, to_str = True, random_seed = 42, sep_cohort = False, randomize = False, use_sample_size = False, sample_size = -1, randomize_seed = 42):
'''
example:
standing heights: 50
'''
if trait_name in ['body_BALDING1', 'cancer_BREAST', 'disease_ALLERGY_ECZEMA_DIAGNOSED', 'disease_HYPOTHYROIDISM_SELF_REP', 'other_MORNINGPERSON', 'pigment_SUNBURN']:
trait_type = 'binary'
else:
trait_type = 'continuous'
pheno_path = os.path.join(self.cohort_data_path, str(trait_name) + '_pheno.pkl')
if os.path.exists(pheno_path):
print_sys('Found local copy...')
self.pheno = load_dict(pheno_path)
else:
print_sys('construct phenotype from scratch...')
self.pheno = pd.read_csv(os.path.join(data_path, 'full_gwas', trait_name+'_'+trait_type+'.csv'))
self.pheno['eid'] = self.pheno.eid.astype('int')
self.pheno = self.pheno[self.pheno['pheno'].notnull()]
if trait_type == 'binary':
self.pheno['pheno'] += 1
self.pheno['pheno'] = self.pheno['pheno'].astype(int)
save_dict(pheno_path, self.pheno)
print_sys('Done! Saving...')
# filtering to cohorts incl. with/without relatives
self.pheno = self.pheno[self.pheno.eid.isin(self.cohort)].reset_index(drop = True)
if to_str:
self.pheno['eid'] = self.pheno['eid'].astype('str')
if not to_plink:
return self.pheno
else:
plink_path = os.path.join(self.cohort_data_path, str(trait_name) + '_plink')
if self.keep_relatives:
plink_path = plink_path + '_with_relatives'
else:
plink_path = plink_path + '_no_relatives'
if use_sample_size:
plink_path = plink_path + '_' + str(sample_size) + '_' + str(random_seed)
if sep_cohort:
plink_path += '_sep_cohort'
if randomize:
plink_path += '_randomize' + str(randomize_seed)
plink_path = plink_path + '.txt'
if randomize:
self.pheno['pheno'] = self.pheno['pheno'].sample(frac = 1, random_state = randomize_seed).values
if use_sample_size:
from sklearn.model_selection import train_test_split
print('random_seed:', random_seed)
pheno_shuffle = self.pheno.sample(frac = 1, random_state = random_seed)
all_ids, y = pheno_shuffle.eid.values, pheno_shuffle['pheno'].values
train_val_ids, test_ids, y_train_val, y_test = all_ids[:sample_size], all_ids[sample_size:], y[:sample_size], y[sample_size:]
if sep_cohort:
self.pheno = self.pheno[self.pheno.eid.isin(test_ids)]
else:
self.pheno = self.pheno[self.pheno.eid.isin(train_val_ids)]
if not os.path.exists(plink_path):
print_sys('Saving...')
self.pheno[['eid', 'eid', self.pheno.columns.values[-1]]].to_csv(plink_path, header=None, index=None, sep=' ')
else:
print_sys('Already existed! Loading...')
self.pheno_plink = pd.read_csv(plink_path, header = None, sep = ' ')
return self.pheno_plink
def get_phenotype(self, field_id, aggregate = 'last_value', to_plink = False, to_str = True, normalize = 'None', frac = 1, random_seed = 42, fastgwa_match = False, icd10 = False, icd10_level = 2, sep_cohort = False, randomize = False, use_sample_size = False, sample_size = -1, randomize_seed = 42):
'''
example:
standing heights: 50
'''
pheno_path = os.path.join(self.cohort_data_path, str(field_id) + '_pheno.pkl')
if os.path.exists(pheno_path):
print_sys('Found local copy...')
self.pheno = load_dict(pheno_path)
else:
print_sys('construct phenotype from scratch...')
if icd10:
## field_id is icd10 level
icd10_df = self.get_icd10(to_plink = True, level = icd10_level, get_all = True)
self.pheno = icd10_df[['FID', field_id]].rename(columns = {'FID': 'eid'})
self.pheno['eid'] = self.pheno.eid.astype('int')
else:
## from raw data field id
self.pheno = get_fields([field_id], self.main_data_path)
save_dict(pheno_path, self.pheno)
print_sys('Done! Saving...')
if len(self.pheno.columns.values) > 2:
print_sys('There are multiple index for this phenotype... aggregate...')
if aggregate == 'last_value':
print_sys('Getting the latest measure...')
tmp = pd.DataFrame()
tmp['eid'] = self.pheno.loc[:, 'eid']
tmp[str(field_id)] = get_row_last_values(self.pheno.iloc[:, 1:])
self.pheno = tmp
print_sys('There are ' + str(len(self.pheno[self.pheno[str(field_id)].isnull()])) + ' samples with NaN values. Removing them ...')
self.pheno = self.pheno[self.pheno[str(field_id)].notnull()]
if fastgwa_match:
# get the number of without relatives:
if not self.keep_relatives:
raise ValueError('If you turned fastgwa_match = True, then keep_relatives = True!')
self.rel_ratio = len(self.pheno[self.pheno.eid.isin(self.no_rel_eid)])/len(self.pheno[self.pheno.eid.isin(self.cohort)])
# filtering to cohorts incl. with/without relatives
self.pheno = self.pheno[self.pheno.eid.isin(self.cohort)].reset_index(drop = True)
if normalize != 'None':
y = self.pheno[str(field_id)].values
if normalize == 'log':
y = np.log(y)
elif normalize == 'std':
y = (y - np.mean(y))/np.std(y)
elif normalize == 'quantile_normalization':
from sklearn.preprocessing import quantile_transform
y = quantile_transform(y.reshape(-1,1), output_distribution = 'normal', random_state = 42).reshape(-1)
self.pheno[str(field_id)] = y
if to_str:
self.pheno['eid'] = self.pheno['eid'].astype('str')
if not to_plink:
return self.pheno
else:
plink_path = os.path.join(self.cohort_data_path, str(field_id) + '_plink')
if self.keep_relatives:
plink_path = plink_path + '_with_relatives'
else:
plink_path = plink_path + '_no_relatives'
if normalize != 'None':
plink_path = plink_path + '_' + str(normalize)
if use_sample_size:
plink_path = plink_path + '_' + str(sample_size) + '_' + str(random_seed)
else:
if frac != 1:
plink_path = plink_path + '_' + str(frac) + '_' + str(random_seed)
if fastgwa_match:
plink_path += '_match'
if sep_cohort:
plink_path += '_sep_cohort'
if randomize:
plink_path += '_randomize' + str(randomize_seed)
plink_path = plink_path + '.txt'
if randomize:
self.pheno[str(field_id)] = self.pheno[str(field_id)].sample(frac = 1, random_state = randomize_seed).values
if use_sample_size:
from sklearn.model_selection import train_test_split
if icd10:
df_cases = self.pheno[self.pheno[str(field_id)] == 2]
df_cases_shuffle = df_cases.sample(frac = 1, random_state = random_seed)
all_ids, y = df_cases_shuffle.eid.values, df_cases_shuffle[str(field_id)].values
train_val_ids, test_ids, y_train_val, y_test = all_ids[:sample_size], all_ids[sample_size:], y[:sample_size], y[sample_size:]
train_val_ids = np.concatenate((train_val_ids, self.pheno[self.pheno[str(field_id)] == 1].eid.values))
self.pheno = self.pheno[self.pheno.eid.isin(train_val_ids)]
if sep_cohort:
raise NotImplementedError
else:
print('random_seed', random_seed)
pheno_shuffle = self.pheno.sample(frac = 1, random_state = random_seed)
all_ids, y = pheno_shuffle.eid.values, pheno_shuffle[str(field_id)].values
train_val_ids, test_ids, y_train_val, y_test = all_ids[:sample_size], all_ids[sample_size:], y[:sample_size], y[sample_size:]
if fastgwa_match:
raise ValueError('Not used anymore...')
if sep_cohort:
self.pheno = self.pheno[self.pheno.eid.isin(test_ids)]
else:
self.pheno = self.pheno[self.pheno.eid.isin(train_val_ids)]
else:
if frac!=1:
from sklearn.model_selection import train_test_split
all_ids, y = self.pheno.eid.values, self.pheno[str(field_id)].values
train_val_ids, test_ids, y_train_val, y_test = train_test_split(all_ids, y, test_size=frac, random_state=random_seed)
if fastgwa_match:
train_val_ids, test_ids, y_train_val, y_test = train_test_split(train_val_ids, y_train_val, test_size=1-self.rel_ratio, random_state=42)
if sep_cohort:
self.pheno = self.pheno[self.pheno.eid.isin(test_ids)]
else:
self.pheno = self.pheno[self.pheno.eid.isin(train_val_ids)]
if not os.path.exists(plink_path):
self.pheno[['eid', 'eid', self.pheno.columns.values[-1]]].to_csv(plink_path, header=None, index=None, sep=' ')
else:
print_sys('Already existed! Loading...')
self.pheno_plink = pd.read_csv(plink_path, header = None, sep = ' ')
return self.pheno_plink
def get_icd10(self, to_plink = False, level = 2, get_all = False):
'''
icd10: 41270
'''
pheno_path = os.path.join(self.cohort_data_path, 'icd10.pkl')
level_str = 'level' + str(level)
if os.path.exists(pheno_path):
print_sys('Found local copy...')
self.icd10 = load_dict(pheno_path)
else:
print_sys('construct from scratch...')
icd10_raw_concat = get_fields([41270], self.main_data_path)
icd10_columns = icd10_raw_concat.columns.values[1:]
icd10_tuple = icd10_raw_concat.apply(lambda x: (x.eid, x[icd10_columns][x[icd10_columns].notnull()].values), axis = 1)
icd10 = pd.DataFrame(list(icd10_tuple.values)).rename(columns = {0: 'eid', 1: 'level3'})
icd10['level2'] = icd10['level3'].apply(lambda x: np.unique([i[:3] for i in x]))
save_dict(pheno_path, icd10)
print_sys('Done! Saving...')
self.icd10 = icd10
if get_all:
self.pheno = self.icd10.reset_index(drop = True)
else:
self.pheno = self.icd10[self.icd10.eid.isin(self.cohort)].reset_index(drop = True)
if not to_plink:
return self.pheno
else:
if self.keep_relatives or get_all:
plink_path = os.path.join(self.cohort_data_path, 'icd10_plink_with_relatives_' + level_str + '.txt')
else:
plink_path = os.path.join(self.cohort_data_path, 'icd10_plink_no_relatives_' + level_str + '.txt')
if os.path.exists(plink_path):
print_sys("Found local copy...")
self.icd10_plink = pd.read_csv(plink_path, sep=' ')
else:
print_sys('transforming to plink files... takes around 1 min...')
unique_icd10 = np.unique([item for sublist in self.pheno[level_str].values for item in sublist])
icd10_2_idx = dict(zip(unique_icd10, range(len(unique_icd10))))
idx_2_icd10 = dict(zip(range(len(unique_icd10)), unique_icd10))
self.pheno[level_str + '_idx'] = self.pheno[level_str].apply(lambda x: [icd10_2_idx[i] for i in x])
tmp = np.zeros((len(self.pheno), len(unique_icd10)), dtype=np.int8)
for idx, i in enumerate(self.pheno[level_str + '_idx'].values):
tmp[idx, i] = 1
icd10_plink = pd.DataFrame(tmp).rename(columns = idx_2_icd10)
icd102sample_size = dict(icd10_plink.sum(axis = 0))
icd_100 = [i for i,j in icd102sample_size.items() if j > 100]
icd10_plink = icd10_plink + 1
icd10_plink['IID'] = self.pheno.eid.values
icd10_plink['FID'] = self.pheno.eid.values
icd10_plink = icd10_plink.loc[:, ['FID', 'IID'] + icd_100]
print_sys('Only using ICD10 codes with at least 100 cases...')
print_sys('There are ' + str(len(icd_100)) + ' ICD10 codes with at least 100 cases.')
icd10_plink.to_csv(plink_path, index=None, sep=' ')
self.icd10_plink = icd10_plink
return self.icd10_plink