[1a700d]: / kgwas / conv.py

Download this file

233 lines (197 with data), 9.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from typing import Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import Tensor
from torch.nn import Parameter
from torch_sparse import SparseTensor, set_diag
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.nn.dense.linear import Linear
from torch_geometric.typing import NoneType # noqa
from torch_geometric.typing import Adj, OptPairTensor, OptTensor, Size
from torch_geometric.utils import add_self_loops, remove_self_loops, softmax
from torch_geometric.nn.inits import glorot, zeros
'''
def group(xs: List[Tensor], aggr: Optional[str]) -> Optional[Tensor]:
if len(xs) == 0:
return None
elif aggr is None:
return torch.stack(xs, dim=1)
elif len(xs) == 1:
return xs[0]
elif isinstance(xs[0], tuple):
return xs
else:
out = torch.stack(xs, dim=0)
out = getattr(torch, aggr)(out, dim=0)
out = out[0] if isinstance(out, tuple) else out
return out
'''
class GATConv(MessagePassing):
def __init__(
self,
in_channels: Union[int, Tuple[int, int]],
out_channels: int,
heads: int = 1,
concat: bool = True,
negative_slope: float = 0.2,
dropout: float = 0.0,
add_self_loops: bool = True,
edge_dim: Optional[int] = None,
fill_value: Union[float, Tensor, str] = 'mean',
bias: bool = True,
sigmoid_gat: bool = False,
temperature: float = 1,
pheno_condition: bool = False,
**kwargs,
):
kwargs.setdefault('aggr', 'add')
super().__init__(node_dim=0, **kwargs)
self.in_channels = in_channels
self.out_channels = out_channels
self.heads = heads
self.concat = concat
self.negative_slope = negative_slope
self.dropout = dropout
self.add_self_loops = add_self_loops
self.edge_dim = edge_dim
self.fill_value = fill_value
self.sigmoid_gat = sigmoid_gat
self.temperature = temperature
self.pheno_condition = pheno_condition
if self.pheno_condition == 'ATT':
self.lin_edge_ = Linear(self.out_channels, heads * out_channels, bias=False,
weight_initializer='glorot')
self.att_edge = Parameter(torch.Tensor(1, heads, out_channels))
elif self.pheno_condition == 'MSG':
self.pheno_mlp = Linear(edge_dim, heads * out_channels, bias=False,
weight_initializer='glorot')
# In case we are operating in bipartite graphs, we apply separate
# transformations 'lin_src' and 'lin_dst' to source and target nodes:
if isinstance(in_channels, int):
self.lin_src = Linear(in_channels, heads * out_channels,
bias=False, weight_initializer='glorot')
self.lin_dst = self.lin_src
else:
self.lin_src = Linear(in_channels[0], heads * out_channels, False,
weight_initializer='glorot')
self.lin_dst = Linear(in_channels[1], heads * out_channels, False,
weight_initializer='glorot')
# The learnable parameters to compute attention coefficients:
self.att_src = Parameter(torch.Tensor(1, heads, out_channels))
self.att_dst = Parameter(torch.Tensor(1, heads, out_channels))
if edge_dim is not None:
self.lin_edge = Linear(edge_dim, heads * out_channels, bias=False,
weight_initializer='glorot')
self.att_edge = Parameter(torch.Tensor(1, heads, out_channels))
else:
self.lin_edge = None
self.register_parameter('att_edge', None)
if bias and concat:
self.bias = Parameter(torch.Tensor(heads * out_channels))
elif bias and not concat:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
self.lin_src.reset_parameters()
self.lin_dst.reset_parameters()
if self.lin_edge is not None:
self.lin_edge.reset_parameters()
glorot(self.att_src)
glorot(self.att_dst)
glorot(self.att_edge)
zeros(self.bias)
def forward(self, x: Union[Tensor, OptPairTensor], edge_index: Adj,
edge_attr: OptTensor = None, size: Size = None, pheno_emb = None,
return_attention_weights=None, return_raw_attention_weights = None):
if return_raw_attention_weights:
self.return_raw_attention_weights = True
else:
self.return_raw_attention_weights = False
H, C = self.heads, self.out_channels
# We first transform the input node features. If a tuple is passed, we
# transform source and target node features via separate weights:
if isinstance(x, Tensor):
assert x.dim() == 2, "Static graphs not supported in 'GATConv'"
x_src = x_dst = self.lin_src(x).view(-1, H, C)
else: # Tuple of source and target node features:
x_src, x_dst = x
assert x_src.dim() == 2, "Static graphs not supported in 'GATConv'"
x_src = self.lin_src(x_src).view(-1, H, C)
if x_dst is not None:
x_dst = self.lin_dst(x_dst).view(-1, H, C)
x = (x_src, x_dst)
# Next, we compute node-level attention coefficients, both for source
# and target nodes (if present):
alpha_src = (x_src * self.att_src).sum(dim=-1)
alpha_dst = None if x_dst is None else (x_dst * self.att_dst).sum(-1)
alpha = (alpha_src, alpha_dst)
if self.add_self_loops:
if isinstance(edge_index, Tensor):
# We only want to add self-loops for nodes that appear both as
# source and target nodes:
num_nodes = x_src.size(0)
if x_dst is not None:
num_nodes = min(num_nodes, x_dst.size(0))
num_nodes = min(size) if size is not None else num_nodes
edge_index, edge_attr = remove_self_loops(
edge_index, edge_attr)
edge_index, edge_attr = add_self_loops(
edge_index, edge_attr, fill_value=self.fill_value,
num_nodes=num_nodes)
elif isinstance(edge_index, SparseTensor):
if self.edge_dim is None:
edge_index = set_diag(edge_index)
else:
raise NotImplementedError(
"The usage of 'edge_attr' and 'add_self_loops' "
"simultaneously is currently not yet supported for "
"'edge_index' in a 'SparseTensor' form")
# edge_updater_type: (alpha: OptPairTensor, edge_attr: OptTensor)
alpha = self.edge_updater(edge_index, alpha=alpha, edge_attr=edge_attr)
#if self.return_raw_attention_weights:
# return 0, (edge_index, alpha)
# propagate_type: (x: OptPairTensor, alpha: Tensor)
out = self.propagate(edge_index, x=x, alpha=alpha, size=size)
if self.concat:
out = out.view(-1, self.heads * self.out_channels)
else:
out = out.mean(dim=1)
if self.bias is not None:
out = out + self.bias
if isinstance(return_attention_weights, bool):
if isinstance(edge_index, Tensor):
return out, (edge_index, alpha)
elif isinstance(edge_index, SparseTensor):
return out, edge_index.set_value(alpha, layout='coo')
else:
return out
def edge_update(self, alpha_j: Tensor, alpha_i: OptTensor,
edge_attr: OptTensor, index: Tensor, ptr: OptTensor,
size_i: Optional[int]) -> Tensor:
# Given edge-level attention coefficients for source and target nodes,
# we simply need to sum them up to "emulate" concatenation:
alpha = alpha_j if alpha_i is None else alpha_j + alpha_i
if edge_attr is not None and self.lin_edge is not None:
if edge_attr.dim() == 1:
edge_attr = edge_attr.view(-1, 1)
#print(edge_attr)
#print(edge_attr.shape)
edge_attr = self.lin_edge(edge_attr)
edge_attr = edge_attr.view(-1, self.heads, self.out_channels)
alpha_edge = (edge_attr * self.att_edge).sum(dim=-1)
alpha = alpha + alpha_edge
alpha = F.leaky_relu(alpha, self.negative_slope)
if self.sigmoid_gat:
alpha = torch.sigmoid(alpha/self.temperature)
else:
if not self.return_raw_attention_weights:
alpha = softmax(alpha/self.temperature, index, ptr, size_i)
alpha = F.dropout(alpha, p=self.dropout, training=self.training)
return alpha
def message(self, x_j: Tensor, alpha: Tensor) -> Tensor:
return alpha.unsqueeze(-1) * x_j
def __repr__(self) -> str:
return (f'{self.__class__.__name__}({self.in_channels}, '
f'{self.out_channels}, heads={self.heads})')