from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, Conv1D, MaxPooling1D, Flatten, Dense
def create_cnn_model(input_shape, num_classes):
model = Sequential()
model.add(Embedding(input_dim=10000, output_dim=128, input_length=input_shape[1]))
model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Conv1D(filters=128, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
return model