a b/create_rnn_model.py
1
from tensorflow.keras.models import Sequential
2
from tensorflow.keras.layers import Embedding, LSTM, Dense
3
4
def create_rnn_model(input_shape, num_classes):
5
    model = Sequential()
6
    model.add(Embedding(input_dim=10000, output_dim=128, input_length=input_shape[1]))
7
    model.add(LSTM(64))
8
    model.add(Dense(128, activation='relu'))
9
    model.add(Dense(num_classes, activation='softmax'))
10
    
11
    return model