--- a +++ b/create_cnn_model.py @@ -0,0 +1,15 @@ +from tensorflow.keras.models import Sequential +from tensorflow.keras.layers import Embedding, Conv1D, MaxPooling1D, Flatten, Dense + +def create_cnn_model(input_shape, num_classes): + model = Sequential() + model.add(Embedding(input_dim=10000, output_dim=128, input_length=input_shape[1])) + model.add(Conv1D(filters=64, kernel_size=3, activation='relu')) + model.add(MaxPooling1D(pool_size=2)) + model.add(Conv1D(filters=128, kernel_size=3, activation='relu')) + model.add(MaxPooling1D(pool_size=2)) + model.add(Flatten()) + model.add(Dense(128, activation='relu')) + model.add(Dense(num_classes, activation='softmax')) + + return model