|
a |
|
b/model.lua |
|
|
1 |
require 'torch' |
|
|
2 |
require 'nn' |
|
|
3 |
require './util/LSTM' |
|
|
4 |
require './util/ReverseSequence' |
|
|
5 |
require('./util/OneHot.lua') |
|
|
6 |
|
|
|
7 |
|
|
|
8 |
local Model, parent = torch.class('nn.Model', 'nn.Module') |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
local function create_lstm(self, reverse) |
|
|
12 |
local lstm = nn.Sequential() |
|
|
13 |
|
|
|
14 |
if reverse then lstm:add(nn.ReverseSequence(2,self.gpu)) end |
|
|
15 |
|
|
|
16 |
for i = 1, self.rnn_layers do |
|
|
17 |
local prev_dim = self.rnn_size |
|
|
18 |
if i == 1 then prev_dim = self.wordvec_dim end |
|
|
19 |
local rnn = nn.LSTM(prev_dim, self.rnn_size) |
|
|
20 |
rnn.remember_states = false |
|
|
21 |
table.insert(self.rnns, rnn) |
|
|
22 |
lstm:add(rnn) |
|
|
23 |
if self.dropout > 0 then |
|
|
24 |
lstm:add(nn.Dropout(self.dropout)) |
|
|
25 |
end |
|
|
26 |
end |
|
|
27 |
|
|
|
28 |
if reverse then lstm:add(nn.ReverseSequence(2,self.gpu)) end |
|
|
29 |
|
|
|
30 |
return lstm |
|
|
31 |
end |
|
|
32 |
|
|
|
33 |
|
|
|
34 |
function Model:__init(opt) |
|
|
35 |
self.gpu = opt.gpu |
|
|
36 |
self.rnn_size = opt.rnn_size |
|
|
37 |
self.rnn_layers = opt.rnn_layers |
|
|
38 |
self.dropout = opt.dropout |
|
|
39 |
self.batchnorm = opt.batchnorm |
|
|
40 |
self.unidirectional = opt.unidirectional |
|
|
41 |
self.wordvec_dim = #(opt.alphabet) -- ACGT = 4 |
|
|
42 |
self.cnn = opt.cnn |
|
|
43 |
self.rnn = opt.rnn |
|
|
44 |
self.cnn_filters = tablex.map(tonumber, opt.cnn_filters:split('-')) |
|
|
45 |
self.cnn_size = opt.cnn_size |
|
|
46 |
self.cnn_pool = opt.cnn_pool |
|
|
47 |
self.batch_size = opt.batch_size |
|
|
48 |
self.num_classes = opt.num_classes |
|
|
49 |
|
|
|
50 |
self.rnns = {} |
|
|
51 |
self.model = nn.Sequential() |
|
|
52 |
|
|
|
53 |
-- Create input embedding (we always use onehot-encoded matrix in this project) |
|
|
54 |
self.model:add(OneHot(self.wordvec_dim)) |
|
|
55 |
|
|
|
56 |
------------------------------------------ |
|
|
57 |
-------- RNN and CNN-RNN Models ---------- |
|
|
58 |
------------------------------------------ |
|
|
59 |
if self.rnn then |
|
|
60 |
local CNN = nn.Sequential() |
|
|
61 |
local RNN = nn.Sequential() |
|
|
62 |
|
|
|
63 |
----------------------------- |
|
|
64 |
---------- CNN-RNN ---------- |
|
|
65 |
----------------------------- |
|
|
66 |
if self.cnn then |
|
|
67 |
-- only use 1 layer of convolution in CNN-RNN |
|
|
68 |
local pad_size = math.floor(self.cnn_filters[1]/2) |
|
|
69 |
CNN:add(nn.SpatialZeroPadding(0,0,pad_size, pad_size)) |
|
|
70 |
CNN:add(nn.TemporalConvolution(self.wordvec_dim, self.cnn_size, self.cnn_filters[1])) |
|
|
71 |
CNN:add(nn.ReLU()) |
|
|
72 |
self.model:add(CNN) |
|
|
73 |
self.wordvec_dim = self.cnn_size |
|
|
74 |
end |
|
|
75 |
|
|
|
76 |
----------------------------- |
|
|
77 |
------------ RNN ------------ |
|
|
78 |
----------------------------- |
|
|
79 |
local fwd = create_lstm(self, false) |
|
|
80 |
fwd:add(nn.Mean(2)) -- take mean of output vectors over time dimension |
|
|
81 |
local bwd = create_lstm(self, true) |
|
|
82 |
bwd:add(nn.Mean(2)) -- take mean of output vectors over time dimension |
|
|
83 |
|
|
|
84 |
local concat = nn.ConcatTable() |
|
|
85 |
local output_size |
|
|
86 |
|
|
|
87 |
if self.unidirectional then |
|
|
88 |
concat:add(fwd) -- uese ConcatTable for consistency w/ b-lstm |
|
|
89 |
output_size = self.rnn_size |
|
|
90 |
else |
|
|
91 |
concat:add(fwd) |
|
|
92 |
concat:add(bwd) |
|
|
93 |
output_size = self.rnn_size*2 |
|
|
94 |
end |
|
|
95 |
|
|
|
96 |
RNN:add(concat) |
|
|
97 |
RNN:add(nn.JoinTable(2)) |
|
|
98 |
|
|
|
99 |
self.model:add(RNN) |
|
|
100 |
|
|
|
101 |
-- Create output classifier of (CNN-)RNN |
|
|
102 |
self.model:add(nn.Linear((output_size), self.num_classes)) |
|
|
103 |
self.model:add(nn.LogSoftMax()) |
|
|
104 |
|
|
|
105 |
--------------------------------------- |
|
|
106 |
-------------- CNN Model -------------- |
|
|
107 |
--------------------------------------- |
|
|
108 |
else |
|
|
109 |
-- Need to compute output sequnece size to be fed to linear classifier |
|
|
110 |
local input_size = self.wordvec_dim |
|
|
111 |
|
|
|
112 |
-- Create layers |
|
|
113 |
for layer = 1,#self.cnn_filters-1 do |
|
|
114 |
self.model:add(nn.TemporalConvolution(input_size, self.cnn_size, self.cnn_filters[layer])) |
|
|
115 |
input_size = self.cnn_size |
|
|
116 |
self.model:add(nn.ReLU()) |
|
|
117 |
self.model:add(nn.TemporalMaxPooling(self.cnn_pool,self.cnn_pool)) |
|
|
118 |
if self.dropout > 0 then self.model:add(nn.Dropout(self.dropout)) end |
|
|
119 |
end |
|
|
120 |
|
|
|
121 |
-- Last layer of convolution |
|
|
122 |
self.model:add(nn.TemporalConvolution(input_size, self.cnn_size, self.cnn_filters[#self.cnn_filters])) |
|
|
123 |
self.model:add(nn.ReLU()) |
|
|
124 |
if self.dropout > 0 then self.model:add(nn.Dropout(self.dropout)) end |
|
|
125 |
|
|
|
126 |
-- Max pool across entire sequence to get unfiform output size, |
|
|
127 |
-- and transpose (view) to feed into linear classifier |
|
|
128 |
self.model:add(nn.Max(2)) |
|
|
129 |
self.model:add(nn.View(-1,self.cnn_size)) |
|
|
130 |
|
|
|
131 |
-- Output classifier of CNN -- |
|
|
132 |
self.model:add(nn.Linear(self.cnn_size,self.num_classes)) |
|
|
133 |
self.model:add(nn.LogSoftMax()) |
|
|
134 |
end |
|
|
135 |
|
|
|
136 |
print('-------- Model Architechture ----------') |
|
|
137 |
print(self.model) |
|
|
138 |
end |
|
|
139 |
|
|
|
140 |
|
|
|
141 |
|
|
|
142 |
-- Model Functions |
|
|
143 |
function Model:updateOutput(input) |
|
|
144 |
return self.model:forward(input) |
|
|
145 |
end |
|
|
146 |
|
|
|
147 |
function Model:backward(input, gradOutput, scale) |
|
|
148 |
return self.model:backward(input, gradOutput, scale) |
|
|
149 |
end |
|
|
150 |
|
|
|
151 |
function Model:parameters() |
|
|
152 |
return self.model:parameters() |
|
|
153 |
end |
|
|
154 |
|
|
|
155 |
function Model:training() |
|
|
156 |
self.model:training() |
|
|
157 |
parent.training(self) |
|
|
158 |
end |
|
|
159 |
|
|
|
160 |
function Model:evaluate() |
|
|
161 |
self.model:evaluate() |
|
|
162 |
parent.evaluate(self) |
|
|
163 |
end |
|
|
164 |
|
|
|
165 |
function Model:resetStates() |
|
|
166 |
for i, rnn in ipairs(self.rnns) do rnn:resetStates() end |
|
|
167 |
end |
|
|
168 |
|
|
|
169 |
function Model:clearState() |
|
|
170 |
self.model:clearState() |
|
|
171 |
end |