Diff of /README.md [000000] .. [6d0c6b]

Switch to unified view

a b/README.md
1
# Deep Motif Dashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks
2
### Jack Lanchantin, Ritambhara Singh, Beilun Wang, and Yanjun Qi
3
### Pacific Symposium on Biocomputing (PSB) 2017
4
https://arxiv.org/abs/1608.03644
5
6
### Talk slides:
7
https://github.com/QData/DeepMotif/blob/master/psb_talk_slides.pdf
8
9
### bibtex:
10
```
11
@inproceedings{lanchantin2017deep,
12
  title={Deep motif dashboard: Visualizing and understanding genomic sequences using deep neural networks},
13
  author={Lanchantin, Jack and Singh, Ritambhara and Wang, Beilun and Qi, Yanjun},
14
  booktitle={PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017},
15
  pages={254--265},
16
  year={2017},
17
  organization={World Scientific}
18
}
19
```
20
21
[![LICENSE](https://img.shields.io/badge/license-MIT-brightgreen.svg)](https://github.com/QData/DeepMotif/blob/master/LICENSE)
22
23
24
# Installation
25
26
27
## Lua setup
28
The main modeling code is written in Lua using [torch](http://torch.ch)
29
Installation instructions are located [here](http://torch.ch/docs/getting-started.html#_)
30
31
After installing torch, install / update these packages by running the following:
32
33
```bash
34
luarocks install torch
35
luarocks install nn
36
luarocks install optim
37
```
38
39
### CUDA support (Optional)
40
To enable GPU acceleration with [CUDA](https://developer.nvidia.com/cuda-downloads), you'll need to install CUDA 6.5 or higher as well as [cutorch](https://github.com/torch/cutorch) and [cunn](https://github.com/torch/cunn). You can install / update the torch CUDA libraries by running:
41
42
```bash
43
luarocks install cutorch
44
luarocks install cunn
45
```
46
47
## LFS
48
49
Install git large file storage (LFS) in order to download the dataset directly from this git repository.
50
51
https://git-lfs.github.com/
52
53
54
## Visualization Method Dependencies
55
56
Weblogo: http://weblogo.berkeley.edu/
57
58
R: https://www.r-project.org/
59
60
61
# Usage
62
63
64
## Step 1: Get the Data
65
tar xvzf data/deepbind.tar.gz -C data/
66
67
68
## Step 2: Train the model
69
You can train one of the 3 types of models (CNN, RNN, or CNN-RNN). Check the flags in main.lua for parameters to run the code.
70
71
For CNN model:
72
```bash
73
th main.lua -cnn
74
```
75
76
For CNN model:
77
```bash
78
th main.lua -rnn
79
```
80
81
For CNN-RNN model:
82
```bash
83
th main.lua -cnn -rnn
84
```
85
86
## Step 3: Visualize the Model's Predictions
87
Once you have trained models, you can visualize the predictions. 
88
89
90
Saliency Map
91
```bash
92
th saliency_map.lua
93
```
94
95
Temporal Output Values
96
```bash
97
th temporal_output_values.lua
98
```
99
100
Class Optimization
101
```bash
102
th class_optimization.lua
103
```
104
105
106