[c66173]: / bin / DeepMod_scripts / myMultiBiRNN.py

Download this file

478 lines (416 with data), 21.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import tensorflow as tf
from tensorflow.contrib import rnn
import numpy as np
import math
import glob, os, sys, time;
from collections import defaultdict
batchsize = 2048;
# different class weights for unbalanced data
class_weights = tf.constant([0.1,0.9])
#
# create a RNN with LSTM
# define performance evaluation operation
#
def mCreateSession(num_input, num_hidden, timesteps, moptions):
# two classes only
num_classes = 2;
# the number of layers
numlayers = 3;
# learning rate
learning_rate = 0.001
# define input and output
X = tf.placeholder("float", [None, timesteps, num_input]);
Y = tf.placeholder("float", [None, num_classes]);
# for last layers
weights = {'out': tf.Variable(tf.truncated_normal([2*num_hidden, num_classes]))};
biases = {'out': tf.Variable(tf.truncated_normal([num_classes]))}
# define a bidirectional RNN
def BiRNN(x, weights, biases):
x = tf.unstack(x, timesteps, 1);
# define the LSTM cells
lstm_fw_cell = rnn.MultiRNNCell([rnn.BasicLSTMCell(num_hidden, forget_bias=1.0) for _ in range(numlayers)]);
lstm_bw_cell = rnn.MultiRNNCell([rnn.BasicLSTMCell(num_hidden, forget_bias=1.0) for _ in range(numlayers)]);
# define bidirectional RNN
try:
outputs, _, _ = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x, dtype=tf.float32);
except Exception:
outputs = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x, dtype=tf.float32);
# define output layer
if moptions['outputlayer'] in ['sigmoid']:
return tf.contrib.layers.fully_connected(outputs[int(timesteps/2)], num_outputs=num_classes, activation_fn=tf.nn.sigmoid);
else:
return tf.matmul(outputs[int(timesteps/2)], weights['out']) + biases['out']
# get prediction
logits = BiRNN(X, weights, biases);
prediction = tf.nn.softmax(logits)
mfpred=tf.argmax(prediction,1)
## with different class-weights or not
if 'unbalanced' in moptions and (not moptions['unbalanced']==None) and moptions['unbalanced']==1: # class_weights
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=tf.multiply(logits, class_weights), labels=Y))
else:
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=Y))
#
# for optimizer
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate);
train_op = optimizer.minimize(loss_op);
# get accuracy
correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1));
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32));
# AUC
auc_op = tf.metrics.auc(Y, prediction)
# precision
mpre = tf.metrics.precision(tf.argmax(Y, 1), tf.argmax(prediction, 1))
# recall
mspf = tf.metrics.recall(tf.argmax(Y, 1), tf.argmax(prediction, 1))
# initialization of variables
init = tf.global_variables_initializer();
init_l = tf.local_variables_initializer()
saver = tf.train.Saver();
return (init, init_l, loss_op, accuracy, train_op, X, Y, saver, auc_op, mpre, mspf, mfpred)
#
# train a model and save it.
#
def train_save_model(filelists, num_input, mhidden, timesteps, moptions):
training_steps = 4
#training_steps = 40
init, init_l, loss_op, accuracy, train_op, X, Y, saver, auc_op, mpre, mspf, mfpred = mCreateSession(num_input, mhidden, timesteps, moptions)
# display step
desplay_files = len(filelists[0])/100
if desplay_files<2: desplay_files = 2;
if desplay_files>10: desplay_files = int(desplay_files/10) * 10; #desplay_files=2
if desplay_files>100: desplay_files = 100
file_group_id = [0 for _ in range(len(filelists))];
sumpsize = 25;
# for configuration
config = tf.ConfigProto()
if (timesteps>61 and num_input>50):
config.gpu_options.per_process_gpu_memory_fraction = 0.5
else: config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
# initialization
sess.run(init);
sess.run(init_l)
start_time = time.time(); start_c_time = time.time();
io_time = 0;
# for each epoch
for step in range(1, training_steps+1):
print('===%d=====================step========================%d/%d' % (desplay_files, step, training_steps))
sys.stdout.flush()
last_desplay_files_num = -1;
file_group_id[0] = 0
while file_group_id[0] < len(filelists[0]):
io_start_time = time.time();
# for each input groups.
# usually two groups: one positive group and one negative group
# might also one group containing both positive and negative labelling data
featurelist = [[[], []] for _ in range(len(filelists))];
minsize = None; cur_batch_num = None;
# get data from all groups until 'minsize' data is loaded.
for ifl in range(len(filelists)):
if ifl==0:
minsize = batchsize * sumpsize
else: minsize = batchsize * cur_batch_num;
while len(featurelist[ifl][0])<minsize:
if not file_group_id[ifl] < len(filelists[ifl]):
if ifl==0: break;
else: file_group_id[ifl] = 0
# get more data
batch_2_x, batch_2_y, _ = getDataFromFile_new(filelists[ifl][file_group_id[ifl]], moptions)
if len(batch_2_y)>0:
if len(featurelist[ifl][0])==0:
featurelist[ifl][0] = batch_2_x
featurelist[ifl][1] = batch_2_y
else:
# merge current loading data with previously loading data
featurelist[ifl][0] = np.concatenate((featurelist[ifl][0], batch_2_x), axis=0)
featurelist[ifl][1] = np.concatenate((featurelist[ifl][1], batch_2_y), axis=0)
file_group_id[ifl] += 1;
# split for small groups for training
if ifl==0:
featurelist[ifl][0] = np.array_split(featurelist[ifl][0], int(len(featurelist[ifl][0])/batchsize))
featurelist[ifl][1] = np.array_split(featurelist[ifl][1], int(len(featurelist[ifl][1])/batchsize))
cur_batch_num = len(featurelist[ifl][0])
if len(featurelist[0][0])<sumpsize*0.8:
for ifl in range(1, len(filelists)):
if len(featurelist[0][0])*batchsize*1.2 < len(featurelist[ifl][0]):
featurelist[ifl][0] = featurelist[ifl][0][:int(len(featurelist[0][0])*batchsize*1.2)]
featurelist[ifl][1] = featurelist[ifl][1][:int(len(featurelist[0][0])*batchsize*1.2)]
if len(featurelist[0][0])<1: continue
#
if len(filelists)>1:
for ifl in range(1, len(filelists)):
#if (file_group_id[0]+1) - last_desplay_files_num >= desplay_files: msizeprint.append(str(len(featurelist[ifl][0])))
featurelist[ifl][0] = np.array_split(featurelist[ifl][0], len(featurelist[0][0]))
featurelist[ifl][1] = np.array_split(featurelist[ifl][1], len(featurelist[0][0]))
io_time += (time.time() - io_start_time)
ifl=3 if len(featurelist)>3 else len(featurelist)-1
if (file_group_id[0]+1) - last_desplay_files_num >= desplay_files:
sess.run(init_l)
try:
# print some testing information as progress indicators
loss, aucm, acc, p, r = sess.run([loss_op, auc_op[1], accuracy, mpre[1], mspf[1]], feed_dict={X:featurelist[ifl][0][0], Y:featurelist[ifl][1][0]})
print(">>>Tratin#files "+str(file_group_id[0]+1)+",loss="+"{:.3f}".format(loss)+",AUC="+"{:.3f}".format(aucm)+",acc="+"{:.3f}".format(acc)+",p="+"{:.3f}".format(p)+",r="+"{:.3f}".format(r)+(" Comsuming time: %d(current=%d) IO=%d(%.3f)" % (time.time()-start_time, time.time()-start_c_time, io_time, io_time/float(time.time()-start_time))));
except:
print(">>>Tratin#filesError "+str(file_group_id[0]+1)+(" Comsuming time: %d(current=%d) IO=%d(%.3f)" % (time.time()-start_time, time.time()-start_c_time, io_time, io_time/float(time.time()-start_time))));
sys.stdout.flush()
start_c_time = time.time();
# using each subgroup of data for training
for subi in range(len(featurelist[0][0])):
for ifl in range(len(filelists)):
to = sess.run([train_op, loss_op], feed_dict={X:featurelist[ifl][0][subi], Y:featurelist[ifl][1][subi]})
if len(featurelist)==1:
# print some detail if nan issue happens
if math.isnan(to[1]):
for toj in range(len(featurelist[ifl][0][subi])):
print('{} vs {}'.format(featurelist[ifl][1][subi][toj][0], featurelist[ifl][1][subi][toj][1]))
for tok in featurelist[ifl][0][subi][toj]:
opstr = []
for tol in tok:
opstr.append(str(round(tol, 2)))
print("\t\t\t"+','.join(opstr))
sys.exit(1)
# adjust progress output information
ifl=3 if len(featurelist)>3 else len(featurelist)-1
if (file_group_id[0]+1) - last_desplay_files_num >= desplay_files:
last_desplay_files_num = (file_group_id[0]+1) - ((file_group_id[0]+1) % desplay_files)
# store more models
if 49.5<int(file_group_id[0]*100/float(len(filelists[0])))<50.5:
savp = '.50'
if (not os.path.isdir(moptions['outFolder']+str(step-1)+savp)):
os.system('mkdir -p '+moptions['outFolder']+str(step-1)+savp);
saver.save(sess, moptions['outFolder']+str(step-1)+savp+'/'+moptions['FileID']);
if len(featurelist)==1:
cur_per = int(file_group_id[0]*100/float(len(filelists[0])))
if cur_per in [10, 20, 30, 40, 60, 70, 80, 90]:
savp = str(round(cur_per/100.0, 2))
if (not os.path.isdir(moptions['outFolder']+str(step-1)+savp)):
os.system('mkdir -p '+moptions['outFolder']+str(step-1)+savp);
saver.save(sess, moptions['outFolder']+str(step-1)+savp+'/'+moptions['FileID']);
# for each epoch, store the trained model
if (not os.path.isdir(moptions['outFolder']+str(step))):
os.system('mkdir -p '+moptions['outFolder']+str(step));
saver.save(sess, moptions['outFolder']+str(step)+'/'+moptions['FileID']);
print("Training Finished!")
return (accuracy, X, Y, auc_op, mpre, mspf, init_l, mfpred)
#
# get all data files in a folder
#
def getTFiles1(folder1, moptions):
t1files = glob.glob(os.path.join(folder1, "*.xy.gz"))
# get all data in a recursive way
if moptions['recursive']==1:
t1files.extend(glob.glob(os.path.join(folder1, "*/*.xy.gz")))
t1files.extend(glob.glob(os.path.join(folder1, "*/*/*.xy.gz")));
t1files.extend(glob.glob(os.path.join(folder1, "*/*/*/*.xy.gz")));
t1files.extend(glob.glob(os.path.join(folder1, "*/*/*/*/*.xy.gz")));
print("Get folder1");
# for read-based independent testing
print(t1files.__sizeof__(), len(t1files))
if moptions['test'][0] == '0':
if moptions['test'][1]>0.5:
t1files = t1files[:int(len(t1files)*moptions['test'][1])]
else: t1files = t1files[-int(len(t1files)*moptions['test'][1]):]
print('Sizeinfo: %s sizeof=%d len=%d' % (folder1, t1files.__sizeof__(), len(t1files)))
sys.stdout.flush();
return t1files
#
# get all data files in two seperate folders
#
def getTFiles(folder1, folder2, moptions):
t1files = glob.glob(os.path.join(folder1, "*.xy.gz")); #print(t1files.__sizeof__(), len(t1files))
# get all data in a recursive way
if moptions['recursive']==1:
t1files.extend(glob.glob(os.path.join(folder1, "*/*.xy.gz"))); #print(t1files.__sizeof__(), len(t1files))
t1files.extend(glob.glob(os.path.join(folder1, "*/*/*.xy.gz"))); #print(t1files.__sizeof__(), len(t1files))
t1files.extend(glob.glob(os.path.join(folder1, "*/*/*/*.xy.gz"))); #print(t1files.__sizeof__(), len(t1files))
t1files.extend(glob.glob(os.path.join(folder1, "*/*/*/*/*.xy.gz"))); #print(t1files.__sizeof__(), len(t1files))
print("Get folder1");
# for read-based independent testing
print(t1files.__sizeof__(), len(t1files))
if moptions['test'][0] == '0':
if moptions['test'][1]>0.5:
t1files = t1files[:int(len(t1files)*moptions['test'][1])]
else: t1files = t1files[-int(len(t1files)*moptions['test'][1]):]
print(t1files.__sizeof__(), len(t1files))
sys.stdout.flush();
if folder2==None: t2files = []
else:
# get all data in a recursive way for the second folder
t2files = glob.glob(os.path.join(folder2, "*.xy.gz"))
if moptions['recursive']==1:
t2files.extend(glob.glob(os.path.join(folder2, "*/*.xy.gz")))
t2files.extend(glob.glob(os.path.join(folder2, "*/*/*.xy.gz")))
t2files.extend(glob.glob(os.path.join(folder2, "*/*/*/*.xy.gz")))
t2files.extend(glob.glob(os.path.join(folder2, "*/*/*/*/*.xy.gz")))
print("Get folder2");
# for read-based independent testing
print(t2files.__sizeof__(), len(t2files))
if moptions['test'][0] == '0':
if moptions['test'][1]>0.5:
t2files = t2files[:int(len(t2files)*moptions['test'][1])]
else: t2files = t2files[-int(len(t2files)*moptions['test'][1]):]
print(t2files.__sizeof__(), len(t2files))
sys.stdout.flush();
return t1files, t2files
#
# get data from a data file
#
def getDataFromFile(fn, moptions):
mdata = np.loadtxt(fn, dtype=np.float32)
# get genomic position, label, and feature
t0, ty, tx = np.split(mdata, [0,2], axis=1);
return (tx, ty, None)
#
# get X and Y from a data file
#
def getDataFromFile_new(fn, moptions, mfind0ld=None):
mdata = np.loadtxt(fn, dtype=np.float32)
# get genomic position, label, and feature
t0, ty, tx = np.split(mdata, [1,3], axis=1);
if moptions['test'][0] in ['-', '+']:
t0 = t0.astype(int)
nan_file = []
m_data = []; m_y = [];
if not mfind0ld==None:
pos_to_file_dict = defaultdict(); preind = 0
mfind0ldkeys = sorted(list(mfind0ld.keys()));
for mind in range(len(ty)):
if not mfind0ld==None:
if preind<len(mfind0ldkeys) and mind == mfind0ldkeys[preind]:
pos_to_file_dict[len(m_y)] = mfind0ld[ mfind0ldkeys[preind] ]
preind += 1
# for region-based independent testing
if (ty[mind][0]<0.01 and ty[mind][1]<0.01): continue;
if (moptions['test'][0]=='-' and moptions['test'][1]<t0[mind]<moptions['test'][2]) or \
(moptions['test'][0]=='+' and (not moptions['test'][1]<t0[mind]<moptions['test'][2])):
continue;
## check nan values in feature files
has_nan_value = False;
for cur_row in tx[(mind-int(moptions['windowsize']/2)):(mind+int(moptions['windowsize']/2)+1)]:
if np.isnan(cur_row).any():
has_nan_value = True;
break;
if has_nan_value:
if fn in nan_file: pass
else:
print ("Warning-nan-value {}".format(fn))
nan_file.append(fn);
else:
m_y.append(ty[mind])
m_data.append(tx[(mind-int(moptions['windowsize']/2)):(mind+int(moptions['windowsize']/2)+1)])
if not mfind0ld==None:
# since each feature file contains data from several fast5 files
# get the staring rows of fast5 files in feature files
file_to_pos_dict = defaultdict();
ptofkeys = sorted(list(pos_to_file_dict.keys()))
for npk_ind in range(len(ptofkeys)):
if (npk_ind+1<len(ptofkeys) and ptofkeys[npk_ind+1]-ptofkeys[npk_ind]<500) or len(m_y)-ptofkeys[npk_ind]<500: continue;
file_to_pos_dict[ pos_to_file_dict[ptofkeys[npk_ind]] ] = [ptofkeys[npk_ind], (ptofkeys[npk_ind+1] if npk_ind+1<len(ptofkeys) else len(m_y))]
# reshape the data
if len(m_data)>0:
m_data = np.reshape(m_data, (len(m_data), len(m_data[0]), len(m_data[0][0])))
m_y = np.reshape(m_y, (len(m_y), len(m_y[0]))).astype(int)
if not mfind0ld==None:
return (m_data, m_y, file_to_pos_dict);
else: return (m_data, m_y, None)
#
# get index information for each fast5 file in a data file
#
def getGZFilePos(gzfile):
# get the staring row of fast5 files in a feature file
mfind = defaultdict()
with open(gzfile[:-len('.gz')]+'.ind', 'r') as mr:
line = mr.readline()
while line:
line = line.strip();
lsp = line.split();
if len(lsp)>1:
mfind[int(lsp[0])] = lsp[1]
line = mr.readline()
return mfind
#
# make a prediction for data from a data file
#
def mPred(mfbase, mffolder, accuracy, X, Y, test_gzfile2, pf, num_input, auc_op, mpre, mspf, init_l, mfpred, timesteps, moptions):
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
# restore the well-trained model
new_saver = tf.train.import_meta_graph(mfbase+'.meta')
new_saver.restore(sess,tf.train.latest_checkpoint(mffolder))
# write the prediction information
pfwriter = open(pf, 'w');
for test_gzfile in test_gzfile2:
for test_fn_ind in range(len(test_gzfile)):
# get feature files for prediction
test_gzfeature, test_gzlabel, _ = getDataFromFile_new(test_gzfile[test_fn_ind], moptions)
if len(test_gzfeature)<1: continue;
ftlist = np.array_split(test_gzfeature, int(len(test_gzfeature)/batchsize)+1)
lblist = np.array_split(test_gzlabel, int(len(test_gzlabel)/batchsize)+1)
for fti in range(len(ftlist)):
sess.run(init_l)
mfpred_output = sess.run([ mfpred], feed_dict={X:ftlist[fti], Y:lblist[fti]})
# get ture positive, false positive, false negative and true negative
tp, fp, fn, tn = 0, 0, 0, 0
for pi in range(len(mfpred_output[0])):
if mfpred_output[0][pi]==1:
if lblist[fti][pi][1]==1: tp += 1
else: fp += 1
else:
if lblist[fti][pi][1]==1: fn += 1
else: tn += 1
pfwriter.write('tp=%d fp=%d fn=%d tn=%d %s\n' % (tp, fp, fn, tn, test_gzfile[test_fn_ind]))
pfwriter.flush()
pfwriter.close();
#
# entry for prediction
#
def pred_prepare(moptions, test_file, accuracy, X, Y, auc_op, mpre, mspf, init_l, mfpred):
mPred(moptions['modfile'][0], moptions['modfile'][1], accuracy, X, Y, test_file, moptions['outFolder']+moptions['FileID']+'_mpred.txt', moptions['fnum'], auc_op, mpre, mspf, init_l, mfpred, moptions['windowsize'], moptions)
#
# prepare training process
#
def mMult_RNN_LSTM_train(moptions):
# get folders of feature files
filegroups = moptions['wrkBase'].split(';')
for i in range(len(filegroups)):
filegroups[i] = filegroups[i].split(',')
print(filegroups)
# get feature files
filelists = [[] for _ in range(len(filegroups))]
for i in range(len(filegroups)):
for fgj in range(len(filegroups[i])):
if not len(filegroups[i][fgj])>0: continue
filelists[i].extend(getTFiles1(filegroups[i][fgj], moptions))
mostnum, mostid = 0, -1;
# set seed so that random setting
np.random.seed(3)
for i in range(len(filelists)):
np.random.shuffle(filelists[i])
if len(filelists[i])>mostnum:
mostnum = len(filelists[i])
mostid = i;
# set seed so that random setting
np.random.seed(7)
# path for model file
if 'modfile' in moptions and (not moptions['modfile']==None):
if moptions['modfile'].rfind('/')==-1:
moptions['modfile'] = [moptions['modfile'], './']
else:
moptions['modfile'] = [moptions['modfile'], moptions['modfile'][:moptions['modfile'].rfind('/')+1]]
if not mostid==0:
filelists[mostid], filelists[0] = filelists[0], filelists[mostid]
accuracy, X, Y, auc_op, mpre, mspf, init_l, mfpred = train_save_model(filelists, moptions['fnum'], moptions['hidden'], moptions['windowsize'], moptions)
#
# prepare prediction process
#
def pred_entry(moptions):
# get feature files
tfiles = [getTFiles1(moptions['wrkBase'], moptions)]
init, init_l, loss_op, accuracy, train_op, X, Y, saver, auc_op, mpre, mspf, mfpred = mCreateSession(moptions['fnum'], moptions['hidden'], moptions['windowsize'], moptions)
# path for model file
if moptions['modfile'].rfind('/')==-1:
moptions['modfile'] = [moptions['modfile'], './']
else:
moptions['modfile'] = [moptions['modfile'], moptions['modfile'][:moptions['modfile'].rfind('/')+1]]
pred_prepare(moptions, tfiles, accuracy, X, Y, auc_op, mpre, mspf, init_l, mfpred)