[c66173]: / DeepMod_tools / cal_EcoliDetPerf.py

Download this file

284 lines (242 with data), 13.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#!/usr/bin/env python
import os, sys, time
from collections import defaultdict
import glob
import copy
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from itertools import cycle
from sklearn.metrics import roc_curve, auc
from sklearn.metrics import precision_recall_curve, average_precision_score
from sklearn.metrics import matthews_corrcoef
import rpy2.robjects as robjects
from rpy2.robjects.packages import importr
from pkg_resources import resource_string
from scipy.stats import binom
import copy
ggplot = importr('ggplot2')
importr('gridExtra')
importr('plyr')
na4com = {'A':'T', 'C':'G', 'T':'A', 'G':'C'}
def readFA(mfa, mpat='Cg', mposinpat=0, t_chr=None, t_start=None, t_end=None):
pos_dict = defaultdict(int)
pat3 = copy.deepcopy(mpat.upper())
comp_pat3 = ''.join([na4com[curna] for curna in pat3][::-1])
comp_mposinpat = len(comp_pat3)-1-mposinpat
fadict = defaultdict();
with open(mfa, 'r') as mr:
cur_chr = None;
line = mr.readline();
while line:
line = line.strip();
if len(line)>0:
if line[0]=='>':
if not cur_chr==None:
fadict[cur_chr] = ''.join(fadict[cur_chr])
cur_chr = line[1:].split()[0]
if t_chr in [None, cur_chr]:
fadict[cur_chr] = []
else:
if t_chr in [None, cur_chr]:
fadict[cur_chr].append(line)
line = mr.readline();
if not cur_chr==None:
fadict[cur_chr] = ''.join(fadict[cur_chr])
fakeys = fadict.keys();
cpgdict = defaultdict(int); cpgnum = [0, 0]
for fak in fakeys:
cpgdict[fak] = defaultdict()
for i in range(len(fadict[fak])):
if (t_start==None or i>=t_start) and (t_end==None or i<=t_end):
if i-mposinpat>=0 and i+len(comp_pat3)-1-mposinpat<len(fadict[fak]) and ''.join(fadict[fak][i-mposinpat:(i+len(comp_pat3)-1-mposinpat+1)])==pat3:
cpgdict[fak][('+', i)] = [1, fadict[fak][i]]; cpgnum[0] += 1
cpgdict[fak][('-', i)] = [0, fadict[fak][i]]
elif i-comp_mposinpat>=0 and i+len(comp_pat3)-1-comp_mposinpat<len(fadict[fak]) and ''.join(fadict[fak][i-comp_mposinpat:(i+len(comp_pat3)-1-comp_mposinpat+1)])==comp_pat3:
cpgdict[fak][('+', i)] = [0, fadict[fak][i]]
cpgdict[fak][('-', i)] = [1, fadict[fak][i]]; cpgnum[1] += 1
else:
cpgdict[fak][('+', i)] = [0, fadict[fak][i]]
cpgdict[fak][('-', i)] = [0, fadict[fak][i]]
print('%s%d site: %d(+) %d(-)' % (pat3, mposinpat, cpgnum[0], cpgnum[1]))
return cpgdict
def readmodf_dict(cpgdict, modf, pred_dict, mna, t_start=None, t_end=None):
with open(modf, 'r') as mr:
while True:
line = mr.readline();
if not line: break;
line = line.strip();
if len(line)>0:
lsp = line.split();
cur_chr = lsp[0];
cur_pos = int(lsp[1]);
cur_strand = lsp[5];
cur_cov = int(lsp[9]);
cur_m_p = int(lsp[10]);
cur_m_c = int(lsp[11]);
if not ((t_start==None or cur_pos>=t_start) and (t_end==None or cur_pos<=t_end)):
line = mr.readline();
continue;
if not (mna==lsp[3] and lsp[3]==(cpgdict[cur_chr][(cur_strand, cur_pos)][1] if cur_strand=='+' else na4com[cpgdict[cur_chr][(cur_strand, cur_pos)][1]])):
print ('Error !! NA not equal %s == %s == %s %s' % (mna, lsp[3], cpgdict[cur_chr][(cur_strand, cur_pos)][1], modf))
if (cur_chr, cur_pos, cur_strand) not in pred_dict:
pred_dict[(cur_chr, cur_pos, cur_strand)] = [cur_cov, cur_m_p, cur_m_c, lsp[3]]
else:
pred_dict[(cur_chr, cur_pos, cur_strand)][0] += cur_cov
pred_dict[(cur_chr, cur_pos, cur_strand)][2] += cur_m_c
pred_dict[(cur_chr, cur_pos, cur_strand)][1] = int(pred_dict[(cur_chr, cur_pos, cur_strand)][2]*100/pred_dict[(cur_chr, cur_pos, cur_strand)][0]) if pred_dict[(cur_chr, cur_pos, cur_strand)][0]>0 else 0
def add_from_dict(cpgdict, pred_dict, label, pred_list, mna, tp_fp_tn_fn, mpat='Cg', mposinpat=0):
for posk in pred_dict:
cur_chr, cur_pos, cur_strand = posk
cur_cov, cur_m_p, cur_m_c, lsp3 = pred_dict[posk]
iscpg = False;
if cpgdict[cur_chr][(cur_strand, cur_pos)][0]==1:
iscpg = True;
pred_list.append((label, cur_cov, cur_m_p, cur_m_c, mpat, np.log(binom.pmf(cur_m_c, cur_cov, 0.05)) ))
if (lsp3==mpat[mposinpat]): pass
else: print ('Error not methylated pos %s %s %s' % (mna, cur_strand))
if not iscpg:
isclosec = False;
for i in range(-3, 4):
if (cur_strand, cur_pos+i) in cpgdict[cur_chr] and cpgdict[cur_chr][(cur_strand, cur_pos+i)][0]==1:
isclosec = True; break;
if lsp3==mpat[mposinpat]:
pred_list.append((0, cur_cov, cur_m_p, cur_m_c, mpat+'_n'+str(abs(i))+mpat[mposinpat] if isclosec else 'Other'+mpat[mposinpat], np.log(binom.pmf(cur_m_c, cur_cov, 0.05)) ))
else:
pred_list.append((0, cur_cov, cur_m_p, cur_m_c, mpat+'_nb' if isclosec else 'Other', np.log(binom.pmf(cur_m_c, cur_cov, 0.05)) ))
if pred_list[-1][0]==0:
tp_fp_tn_fn[2] += cur_cov - cur_m_c
tp_fp_tn_fn[1] += cur_m_c
else:
tp_fp_tn_fn[0] += cur_m_c
tp_fp_tn_fn[3] += cur_cov - cur_m_c
def readmodf(cpgdict, modf, label, pred_list, mna, tp_fp_tn_fn, mpat='Cg', mposinpat=0, t_start=None, t_end=None):
with open(modf, 'r') as mr:
line = mr.readline();
while line:
line = line.strip();
if len(line)>0:
lsp = line.split();
cur_chr = lsp[0];
cur_pos = int(lsp[1]);
cur_strand = lsp[5];
cur_cov = int(lsp[9]);
cur_m_p = int(lsp[10]);
cur_m_c = int(lsp[11]);
if not ((t_start==None or cur_pos>=t_start) and (t_end==None or cur_pos<=t_end)):
line = mr.readline();
continue;
if not (mna==lsp[3] and lsp[3]==(cpgdict[cur_chr][(cur_strand, cur_pos)][1] if cur_strand=='+' else na4com[cpgdict[cur_chr][(cur_strand, cur_pos)][1]])):
print ('Error !! NA not equal %s == %s == %s %s' % (mna, lsp[3], cpgdict[cur_chr][(cur_strand, cur_pos)][1], modf))
iscpg = False;
if cpgdict[cur_chr][(cur_strand, cur_pos)][0]==1:
iscpg = True;
pred_list.append((label, cur_cov, cur_m_p, cur_m_c, mpat, np.log(binom.pmf(cur_m_c, cur_cov, 0.05)) ))
if (lsp[3]==mpat[mposinpat]): pass
else: print ('Error not methylated pos %s %s %s' % (mna, cur_strand, modf))
if not iscpg:
isclosec = False;
for i in range(-3, 4):
if (cur_strand, cur_pos+i) in cpgdict[cur_chr] and cpgdict[cur_chr][(cur_strand, cur_pos+i)][0]==1:
isclosec = True; break;
if lsp[3]==mpat[mposinpat]:
pred_list.append((0, cur_cov, cur_m_p, cur_m_c, mpat+'_n'+str(abs(i))+mpat[mposinpat] if isclosec else 'Other'+mpat[mposinpat], np.log(binom.pmf(cur_m_c, cur_cov, 0.05)) ))
else:
pred_list.append((0, cur_cov, cur_m_p, cur_m_c, mpat+'_nb' if isclosec else 'Other', np.log(binom.pmf(cur_m_c, cur_cov, 0.05)) ))
if pred_list[-1][0]==0:
tp_fp_tn_fn[2] += cur_cov - cur_m_c
tp_fp_tn_fn[1] += cur_m_c
else:
tp_fp_tn_fn[0] += cur_m_c
tp_fp_tn_fn[3] += cur_cov - cur_m_c
line = mr.readline();
sssfolder = sys.argv[1]; #
mreffile = sys.argv[2]; #
mpat=sys.argv[3]; # Cg
mposinpat=int(sys.argv[4]);# 0
chrofinterest = sys.argv[5];
if chrofinterest=='': chrofinterest = None;
stposofinterest = int(sys.argv[6]);
if stposofinterest<0: stposofinterest = None;
edposofinterest = int(sys.argv[7]);
if edposofinterest<0: edposofinterest = None;
basefig = sys.argv[8]
hastwoclass = 1;
sssfiles = {mpat[mposinpat]:glob.glob(os.path.join(sssfolder, 'mod_pos.*.'+mpat[mposinpat]+'.bed'))}
sssfiles[mpat[mposinpat]].extend(glob.glob(os.path.join(sssfolder, '*/mod_pos.*.'+mpat[mposinpat]+'.bed')))
sssfiles[mpat[mposinpat]].extend(glob.glob(os.path.join(sssfolder, '*/*/mod_pos.*.'+mpat[mposinpat]+'.bed')))
print(str(len(sssfiles[mpat[mposinpat]])) + " " + str(sssfolder))
## for negative;
umrfiles = []
for cur_umr_f in sys.argv[9].split(','):
if not os.path.isdir(cur_umr_f):
print("No prediction folder {}".format(cur_umr_f))
sys.exit(1);
umrfiles.extend(glob.glob(os.path.join(cur_umr_f, '*/*/mod_pos.*.'+mpat[mposinpat]+'.bed')))
umrfiles.extend(glob.glob(os.path.join(cur_umr_f, '*/mod_pos.*.'+mpat[mposinpat]+'.bed')))
umrfiles.extend(glob.glob(os.path.join(cur_umr_f, 'mod_pos.*.'+mpat[mposinpat]+'.bed')))
print(str(len(umrfiles)) + " " + str(sys.argv[9].split(',')))
sys.stdout.flush()
for sa in sssfiles:
print (sa)
for nf in sssfiles[sa]:
print ('\t'+nf)
cpgdict = readFA(mreffile, mpat, mposinpat, chrofinterest, stposofinterest, edposofinterest)
pred_dict = defaultdict();
for modf in umrfiles:
readmodf_dict(cpgdict, modf, pred_dict, mpat[mposinpat], stposofinterest, edposofinterest)
baseinfo = [mpat, mpat+'_n1'+mpat[mposinpat], mpat+'_n2'+mpat[mposinpat], mpat+'_n3'+mpat[mposinpat], 'Other'+mpat[mposinpat], mpat+'_nb', 'Other']
classify_m = ['Methylation_Percentage']
classify_types = [baseinfo, [mpat]]
filename = [['all_mp','motif_mp'] ]
cov_thr = [1, 5]
mlinestyle = {1:'bo-', 3:'gx--', 5:'r*-.', 7:'cs-', 10:'md--', 15:'k+-.'}
pred_list = []; tp_fp_tn_fn = [0, 0, 0, 0]
add_from_dict(cpgdict, pred_dict, 0, pred_list, mpat[mposinpat], tp_fp_tn_fn, mpat, mposinpat)
if True:
for na4 in sssfiles:
for cur_f in sssfiles[na4]:
print('%s %s' % (na4, cur_f)); sys.stdout.flush();
readmodf(cpgdict, cur_f, hastwoclass, pred_list, na4, tp_fp_tn_fn, mpat, mposinpat, stposofinterest, edposofinterest);
pred_list = np.array(pred_list, dtype=[('Methylation', np.uint), ('Coverage', np.uint64), ('Methylation_Percentage', np.uint64), ('Methylation_Coverage', np.uint64), ('BaseInfo', 'U20'), ('logp', np.float64)])
if hastwoclass==1:
cov_plot_thr = [1, 5]
for ct_ind in range(len(classify_types)):
ct = classify_types[ct_ind]
cur_ct_data = pred_list[np.isin(pred_list['BaseInfo'], ct)]
for cm_ind in range(len(classify_m)):
print('basetype={} classify_measure={}'.format(ct, classify_m[cm_ind]))
cm = classify_m[cm_ind]
# 1 for roc, 2: pr;
roc_or_pr = 2; roc_or_pr=0
for roc_or_pr in range(1,3):
if roc_or_pr>0:
mfig= plt.figure()
if roc_or_pr==2:
cur_fn = basefig+'/ap_plot_met_pr_'+filename[cm_ind][ct_ind]+'.png'
xylab = ['Recall', 'Precision']; leg_mpos = "lower left"
for covt in cov_plot_thr:
precision, recall, thresholds = precision_recall_curve(cur_ct_data['Methylation'][cur_ct_data['Coverage']>=covt], cur_ct_data[cm][cur_ct_data['Coverage']>=covt])
ap_pr = average_precision_score(cur_ct_data['Methylation'][cur_ct_data['Coverage']>=covt], cur_ct_data[cm][cur_ct_data['Coverage']>=covt])
plt.plot(recall, precision, mlinestyle[covt], lw=2, label='Coverage>=%d (AP=%0.3f)' % (covt, ap_pr))
print('\t\t %s %d ap=%.5f' % (cur_fn, covt, ap_pr))
elif roc_or_pr==1:
xylab = ['False Positive Rate', 'True Positive Rate']; leg_mpos = "lower right"
cur_fn = basefig+'/roc_plot_met_roc_'+filename[cm_ind][ct_ind]+'.png'
prev = 0; prev_ind = -1
for covt in cov_plot_thr:
fpr, tpr, mthr = roc_curve(cur_ct_data['Methylation'][cur_ct_data['Coverage']>=covt], cur_ct_data[cm][cur_ct_data['Coverage']>=covt])
#print(','.join([str(np.round(t1, 5)) for t1 in mthr]))
roc_auc = auc(fpr, tpr)
if (not np.isnan(roc_auc)) and (abs(roc_auc - prev)>=0.02 or (covt>10 and abs(roc_auc - prev)>=0.005) or (cov_plot_thr.index(covt)-prev_ind>1 and abs(roc_auc - prev)>=0.005)):
plt.plot(fpr, tpr, mlinestyle[covt], lw=2, label='Coverage>=%d (AUC=%0.3f)' % (covt, roc_auc))
prev = roc_auc; prev_ind = cov_plot_thr.index(covt)
if not np.isnan(roc_auc):
print ('\t\t %s %d %.7f' % (cur_fn, covt, roc_auc))
plt.plot([0, 1], [0, 1])
if roc_or_pr>0:
plt.xlim([0.0, 1.0]); plt.ylim([0.0, 1.0])
plt.xlabel(xylab[0]); plt.ylabel(xylab[1])
plt.legend(loc=leg_mpos)
mfig.savefig(cur_fn, dpi=300); plt.close(mfig)