|
a |
|
b/bin/DeepMod_scripts/EventTable.py |
|
|
1 |
|
|
|
2 |
import os,sys |
|
|
3 |
import numpy as np |
|
|
4 |
import h5py |
|
|
5 |
|
|
|
6 |
|
|
|
7 |
def get_extreme_N(m_signal_dif, n_splits, p_signal_start, p_signal_end, moptions, sp_param): |
|
|
8 |
cu_region_sort_pos = m_signal_dif[int(p_signal_start-sp_param['min_signal_num']+0.5):int(p_signal_end-sp_param['min_signal_num']+0.5)].argsort()[::-1]+p_signal_start; |
|
|
9 |
m_nb_pos = set(); |
|
|
10 |
# print n_splits, type(n_splits), p_signal_start, type(p_signal_start), p_signal_end, type(p_signal_end), sp_param['min_signal_num'], type( sp_param['min_signal_num']), type(p_signal_start+sp_param['min_signal_num']-1) |
|
|
11 |
m_nb_pos.update(range(p_signal_start, int(p_signal_start+sp_param['min_signal_num']-0.5))); |
|
|
12 |
m_nb_pos.update(range(int(p_signal_end-sp_param['min_signal_num']+1.5), p_signal_end)); |
|
|
13 |
split_points_list = [] |
|
|
14 |
for c_pos in cu_region_sort_pos: |
|
|
15 |
if c_pos not in m_nb_pos: |
|
|
16 |
split_points_list.append(c_pos); |
|
|
17 |
if (len(split_points_list)==n_splits): break; |
|
|
18 |
m_nb_pos.update(range(c_pos-sp_param['min_signal_num']+1, c_pos+sp_param['min_signal_num']+1)); |
|
|
19 |
return sorted(split_points_list); |
|
|
20 |
|
|
|
21 |
def getEvent_Info(moptions, sp_param, events_data): |
|
|
22 |
event_info = [] |
|
|
23 |
sp_param['min_signal_num'] = 4; |
|
|
24 |
|
|
|
25 |
signal_sum = np.cumsum(np.insert(np.round(sp_param['raw_signals']/50.0,5), 0, 0)); |
|
|
26 |
m_signal_dif = np.abs(signal_sum[sp_param['min_signal_num']:-sp_param['min_signal_num']]*2 - signal_sum[:-2*sp_param['min_signal_num']] - signal_sum[2*sp_param['min_signal_num']:]) |
|
|
27 |
#print (sp_param['raw_signals'][:20]); |
|
|
28 |
#print (np.round(sp_param['raw_signals']/50.0,5)[:20]); |
|
|
29 |
#print (signal_sum[:20]); |
|
|
30 |
#print (m_signal_dif[:20]) |
|
|
31 |
# sp_param['fq_seq'] = fq_data[1] |
|
|
32 |
last_ev_i = 0; |
|
|
33 |
last_signal_i = events_data[0]['start']; |
|
|
34 |
fq_seq_i = 2; |
|
|
35 |
c_move_num = 1 |
|
|
36 |
incrrt_event_list = [] |
|
|
37 |
for ev_i in range(1, len(events_data)): |
|
|
38 |
if (events_data['move'][ev_i])==0: |
|
|
39 |
pass; |
|
|
40 |
else: |
|
|
41 |
c_move_num += events_data['move'][ev_i] |
|
|
42 |
split_points = get_extreme_N(m_signal_dif, c_move_num-1, last_signal_i, events_data[ev_i]['start']+events_data[ev_i]['length'], moptions, sp_param); |
|
|
43 |
#print c_move_num-1, last_signal_i, ev_i, events_data[ev_i]['start']+events_data[ev_i]['length'], split_points |
|
|
44 |
#for s_i in range(last_signal_i, events_data[ev_i]['start']+events_data[ev_i]['length']): |
|
|
45 |
# if s_i in split_points: |
|
|
46 |
# print '|', |
|
|
47 |
# print sp_param['raw_signals'][s_i], |
|
|
48 |
#print ''; |
|
|
49 |
for c_m_i in range(c_move_num-1): |
|
|
50 |
if c_m_i < len(split_points): |
|
|
51 |
h_m_i = c_m_i; |
|
|
52 |
c_e_p = split_points[h_m_i] |
|
|
53 |
else: |
|
|
54 |
h_m_i = len(split_points)-1 |
|
|
55 |
c_e_p = last_signal_i + sp_param['min_signal_num'] |
|
|
56 |
incrrt_event_list.append(len(event_info)); |
|
|
57 |
|
|
|
58 |
c_mnn = np.mean(sp_param['raw_signals'][last_signal_i:c_e_p]); |
|
|
59 |
c_std = np.std(sp_param['raw_signals'][last_signal_i:c_e_p]); |
|
|
60 |
c_start = last_signal_i; |
|
|
61 |
c_length = c_e_p - last_signal_i; |
|
|
62 |
c_mode = sp_param['fq_seq'][fq_seq_i-2:fq_seq_i+3]; |
|
|
63 |
event_info.append((c_mnn, c_std, c_start, c_length, c_mode)) |
|
|
64 |
|
|
|
65 |
last_signal_i = split_points[h_m_i] |
|
|
66 |
fq_seq_i += 1; |
|
|
67 |
|
|
|
68 |
c_move_num = 1; |
|
|
69 |
ev_i = len(events_data)-1 |
|
|
70 |
c_e_p = events_data[ev_i]['start'] + events_data[ev_i]['length'] |
|
|
71 |
c_mnn = np.mean(sp_param['raw_signals'][last_signal_i:c_e_p]); |
|
|
72 |
c_std = np.std(sp_param['raw_signals'][last_signal_i:c_e_p]); |
|
|
73 |
c_start = last_signal_i; |
|
|
74 |
c_length = c_e_p - last_signal_i; |
|
|
75 |
c_mode = sp_param['fq_seq'][fq_seq_i-2:fq_seq_i+3]; |
|
|
76 |
event_info.append((c_mnn, c_std, c_start, c_length, c_mode)) |
|
|
77 |
|
|
|
78 |
event_info = np.array(event_info, dtype=[('mean', '<f4'), ('stdv', '<f4'), ('start', np.uint64), ('length', np.uint64), ('model_state', 'U5')]) |
|
|
79 |
#c_seq = ''.join([event_model_state[2] for event_model_state in event_info['model_state'] ] ) |
|
|
80 |
|
|
|
81 |
#print '\n' |
|
|
82 |
for c_ev_i in incrrt_event_list: |
|
|
83 |
#print c_ev_i, event_info[c_ev_i-1]['start'], event_info[c_ev_i-1]['length'], event_info[c_ev_i]['start'], event_info[c_ev_i]['length'], event_info[c_ev_i+1]['start'], event_info[c_ev_i+1]['length'] |
|
|
84 |
h_2 = int((event_info[c_ev_i+1]['length'] + event_info[c_ev_i+1]['start'] - event_info[c_ev_i]['start'] )/2+0.2) |
|
|
85 |
event_info[c_ev_i]['length'] = h_2 |
|
|
86 |
event_info[c_ev_i+1]['start'] = event_info[c_ev_i]['start'] + event_info[c_ev_i]['length'] |
|
|
87 |
event_info[c_ev_i+1]['length'] = event_info[c_ev_i+1]['length'] - h_2 |
|
|
88 |
#print '\t', c_ev_i, event_info[c_ev_i-1]['start'], event_info[c_ev_i-1]['length'], event_info[c_ev_i]['start'], event_info[c_ev_i]['length'], event_info[c_ev_i+1]['start'], event_info[c_ev_i+1]['length'] |
|
|
89 |
|
|
|
90 |
#for c_ev_i in range(len(event_info)): |
|
|
91 |
# print c_ev_i, event_info[c_ev_i]['start'], event_info[c_ev_i]['length'], ':', |
|
|
92 |
# for s_i in range(event_info[c_ev_i]['start'], event_info[c_ev_i]['start']+event_info[c_ev_i]['length']): |
|
|
93 |
# pass # print sp_param['raw_signals'][s_i], |
|
|
94 |
# print '' |
|
|
95 |
|
|
|
96 |
#msi = 50; |
|
|
97 |
#print (c_seq[:msi]) |
|
|
98 |
#print (sp_param['fq_seq'][2:(msi+2)]) |
|
|
99 |
#print (c_seq[-msi:]) |
|
|
100 |
#print (sp_param['fq_seq'][-(msi+2):-2]) |
|
|
101 |
#print len(events_data), len(event_info), len(sp_param['fq_seq']) |
|
|
102 |
#ei_i = 0; |
|
|
103 |
#for ev_i in range(0, len(events_data)): |
|
|
104 |
# if (events_data[ev_i]['move']>0): |
|
|
105 |
# print ("%d/%s %d-%d vs %d-%d %s=%s%s" % (ev_i, ei_i,events_data[ev_i]['start'], events_data[ev_i]['start']+events_data[ev_i]['length'], event_info[ei_i]['start'], event_info[ei_i]['start']+event_info[ei_i]['length'], events_data[ev_i]['model_state'][2],event_info[ei_i]['model_state'][2],sp_param['fq_seq'][ei_i+2])) |
|
|
106 |
# ei_i += events_data[ev_i]['move'] |
|
|
107 |
|
|
|
108 |
return event_info |
|
|
109 |
|
|
|
110 |
|
|
|
111 |
if __name__=='__main__': |
|
|
112 |
moptions = {} |
|
|
113 |
sp_param = {} |
|
|
114 |
|
|
|
115 |
exple_data = ['/home/liuq1/project/DeepNanoRepeat/scripts/fortest/f6343e53-9454-41ae-8398-7be6e1b7557d.fast5', \ |
|
|
116 |
'data/alb231/S_053119TrainSeq3ctrloligoSpeIcut/workspace/pass/0/000a7916-373c-4cc3-a3f2-6bed205b09cb.fast5', \ |
|
|
117 |
'data/alb231/S_053119TrainSeq3ctrloligoSpeIcut/workspace/pass/0/00264c38-4945-4263-ae0d-253e6c6a39ba.fast5', \ |
|
|
118 |
'data/alb231/S_053119TrainSeq3ctrloligoSpeIcut/workspace/pass/0/0039f109-46ac-4a81-883d-b55900924dd4.fast5', \ |
|
|
119 |
'data/alb231/S_053119TrainSeq3ctrloligoSpeIcut/workspace/pass/0/0045bf1d-d7be-44b1-9b6c-9bb76a634e0f.fast5' \ |
|
|
120 |
] |
|
|
121 |
|
|
|
122 |
sp_param['f5reader'] = h5py.File(sys.argv[1] if len(sys.argv)>1 else exple_data[0], 'r'); |
|
|
123 |
|
|
|
124 |
fq_str = '/Analyses/Basecall_1D_000/BaseCalled_template/Fastq' |
|
|
125 |
ev_str = '/Analyses/Basecall_1D_000/BaseCalled_template/Events' |
|
|
126 |
fq_str = '/Analyses/Basecall_1D_001/BaseCalled_template/Fastq' |
|
|
127 |
ev_str = '/Analyses/Basecall_1D_001/BaseCalled_template/Events' |
|
|
128 |
sg_str = '/Raw/Reads/' |
|
|
129 |
|
|
|
130 |
sp_param['fq_seq'] = sp_param['f5reader'][fq_str][()].split('\n')[1]; |
|
|
131 |
sp_param['raw_signals'] = sp_param['f5reader'][sg_str].values()[0]['Signal'].value |
|
|
132 |
events_data = sp_param['f5reader'][ev_str].value; |
|
|
133 |
|
|
|
134 |
getEvent_Info(moptions, sp_param, events_data) |
|
|
135 |
|
|
|
136 |
sp_param['f5reader'].close(); |
|
|
137 |
|