[977db3]: / GP / CNN / cnn.py

Download this file

209 lines (174 with data), 9.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from scipy.stats.stats import pearsonr
import pandas as pd
import numpy as np
from keras import backend as K
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers import Dropout
from keras import regularizers
from keras.activations import relu, elu, linear, softmax, tanh, softplus
from keras.callbacks import EarlyStopping, Callback
from keras.wrappers.scikit_learn import KerasRegressor
from keras.optimizers import Adam, Nadam, sgd,Adadelta, RMSprop
from keras.losses import mean_squared_error, categorical_crossentropy, logcosh
from keras.utils.np_utils import to_categorical
from keras import metrics
#keras to CNN
from keras.layers import Flatten, Conv1D, MaxPooling1D
# defining network
from keras.layers import Flatten, Conv1D, MaxPooling1D
from keras import regularizers
#keras Load Model
from keras.models import load_model
import talos as ta
import wrangle as wr
from talos.metrics.keras_metrics import fmeasure_acc
from talos.model.layers import hidden_layers
from talos import live
from talos.model import lr_normalizer, early_stopper, hidden_layers
import os
#custom metric
def acc_pearson_r(y_true, y_pred):
x = y_true
y = y_pred
mx = K.mean(x, axis=0)
my = K.mean(y, axis=0)
xm, ym = x - mx, y - my
r_num = K.sum(xm * ym)
x_square_sum = K.sum(xm * xm)
y_square_sum = K.sum(ym * ym)
r_den = K.sqrt(x_square_sum * y_square_sum)
r = r_num / r_den
return K.mean(r)
def correlation_coefficient_loss(y_true, y_pred):
x = y_true
y = y_pred
mx = K.mean(x)
my = K.mean(y)
xm, ym = x-mx, y-my
r_num = K.sum(tf.multiply(xm,ym))
r_den = K.sqrt(tf.multiply(K.sum(K.square(xm)), K.sum(K.square(ym))))
r = r_num / r_den
r = K.maximum(K.minimum(r, 1.0), -1.0)
return 1 - K.square(r)
# nStride=3 # stride between convolutions
# nFilter=32 # no. of convolutions
def cnn_main(x, y, x_val, y_val, params):
# next we can build the model exactly like we would normally do it
# Instantiate
model_cnn = Sequential()
nSNP = x.shape[1]
try:
out_c = y.shape[1]
except IndexError:
out_c = 1
x = np.expand_dims(x, axis=2)
x_val = np.expand_dims(x_val, axis=2)
# add convolutional layer
if (params['nconv']==1):
model_cnn.add(Conv1D(params['nFilter'], kernel_size=params['kernel_size'],
strides=params['nStride'], input_shape=(nSNP, 1),
kernel_regularizer=regularizers.l2(params['reg2']), kernel_initializer='normal',
activity_regularizer=regularizers.l1(params['reg1']),activation=params['activation_1']))
model_cnn.add(MaxPooling1D(pool_size=params['pool']))
# Solutions above are linearized to accommodate a standard layer
else:
for _ in range(params['nconv']):
if (_==0):
model_cnn.add(Conv1D(params['nFilter'], kernel_size=params['kernel_size'],
strides=params['nStride'], input_shape=(nSNP, 1),
kernel_regularizer=regularizers.l2(params['reg2']), kernel_initializer='normal',
activity_regularizer=regularizers.l1(params['reg1']),activation=params['activation_1']))
model_cnn.add(MaxPooling1D(pool_size=params['pool']))
# Solutions above are linearized to accommodate a standard layer
else:
model_cnn.add(Conv1D(params['nFilter'], kernel_size=params['kernel_size'],
strides=params['nStride'],
kernel_regularizer=regularizers.l2(params['reg2']), kernel_initializer='normal',
activity_regularizer=regularizers.l1(params['reg1']),activation=params['activation_1']))
model_cnn.add(MaxPooling1D(pool_size=params['pool']))
model_cnn.add(Flatten())
if (params['hidden_layers'] != 0):
# if we want to also test for number of layers and shapes, that's possible
for _ in range(params['hidden_layers']):
model_cnn.add(Dense(params['hidden_neurons'], activation=params['activation_2'],
kernel_regularizer=regularizers.l2(params['reg2'])))
model_cnn.add(Dropout(params['dropout_2']))
model_cnn.add(Dense(out_c, activation=params['last_activation'], kernel_regularizer=regularizers.l2(params['reg3'])
))
if params['optimizer']=='Adam':
params['optimizer']= Adam
if params['optimizer']=='Nadam':
params['optimizer']= Nadam
if params['optimizer']=='sgd':
params['optimizer']= sgd
model_cnn.compile(loss=mean_squared_error,
optimizer=params['optimizer'](lr=lr_normalizer(params['lr'], params['optimizer'])),
metrics=[acc_pearson_r])
# simple early stopping
# if you monitor is an accuracy parameter (pearson here, you should chose mode="max"), otherwise it would be "min"
# 7/08/2019 change mean_squared_error here by acc_pearson_r and mode='min' by mode='max'
#es = EarlyStopping(monitor=acc_pearson_r, mode='max', verbose=1)
# callbacks=[live()] see the output
# callbacks= es to EarlyStopping
out_cnn = model_cnn.fit(x, y, validation_split=0.2,
verbose=0, batch_size=params['batch_size'],
epochs=params['epochs'], callbacks=[live()])
return out_cnn, model_cnn
#CNN main categories
def cnn_main_cat(x, y, x_val, y_val, params):
# next we can build the model exactly like we would normally do it
# Instantiate
model_cnn = Sequential()
nSNP = x.shape[1]
out_c= y.shape[1]
x = np.expand_dims(x, axis=2)
x_val = np.expand_dims(x_val, axis=2)
# add convolutional layer
if (params['nconv']==1):
model_cnn.add(Conv1D(params['nFilter'], kernel_size=params['kernel_size'],
strides=params['nStride'], input_shape=(nSNP, 1),
kernel_regularizer=regularizers.l2(params['reg2']), kernel_initializer='normal',
activity_regularizer=regularizers.l1(params['reg1']),activation=params['activation_1']))
model_cnn.add(MaxPooling1D(pool_size=params['pool']))
# Solutions above are linearized to accommodate a standard layer
else:
for _ in range(params['nconv']):
if (_==0):
model_cnn.add(Conv1D(params['nFilter'], kernel_size=params['kernel_size'],
strides=params['nStride'], input_shape=(nSNP, 1),
kernel_regularizer=regularizers.l2(params['reg2']), kernel_initializer='normal',
activity_regularizer=regularizers.l1(params['reg1']),activation=params['activation_1']))
model_cnn.add(MaxPooling1D(pool_size=params['pool']))
# Solutions above are linearized to accommodate a standard layer
else:
model_cnn.add(Conv1D(params['nFilter'], kernel_size=params['kernel_size'],
strides=params['nStride'],
kernel_regularizer=regularizers.l2(params['reg2']), kernel_initializer='normal',
activity_regularizer=regularizers.l1(params['reg1']),activation=params['activation_1']))
model_cnn.add(MaxPooling1D(pool_size=params['pool']))
model_cnn.add(Flatten())
if (params['hidden_layers'] != 0):
# if we want to also test for number of layers and shapes, that's possible
for _ in range(params['hidden_layers']):
model_cnn.add(Dense(params['hidden_neurons'], activation=params['activation_1'],
activity_regularizer=regularizers.l1(params['reg1'])))
model_cnn.add(Dropout(params['dropout']))
model_cnn.add(Dense(out_c, activation='softmax'))
if params['optimizer']=='Adam':
params['optimizer']= Adam
if params['optimizer']=='Nadam':
params['optimizer']= Nadam
if params['optimizer']=='sgd':
params['optimizer']= sgd
model_cnn.compile(loss='categorical_crossentropy', optimizer=params['optimizer'](lr=lr_normalizer(params['lr'],
params['optimizer'])),metrics=['accuracy'])
# simple early stopping
# if you monitor is an accuracy parameter (pearson here, you should chose mode="max"), otherwise it would be "min"
#es = EarlyStopping(monitor=mean_squared_error, mode='min', verbose=1)
# callbacks=[live()] see the output
# callbacks= es to EarlyStopping
out_cnn = model_cnn.fit(x, y, validation_split=0.2,
verbose=0, batch_size=params['batch_size'],
epochs=params['epochs'])
return out_cnn, model_cnn