from scipy.stats.stats import pearsonr
import pandas as pd
import numpy as np
from keras import backend as K
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers import Dropout
from keras import regularizers
from keras.activations import relu, elu, linear, softmax, tanh, softplus
from keras.callbacks import EarlyStopping, Callback
from keras.wrappers.scikit_learn import KerasRegressor
from keras.optimizers import Adam, Nadam, sgd,Adadelta, RMSprop
from keras.losses import mean_squared_error, categorical_crossentropy, logcosh
from keras.utils.np_utils import to_categorical
from keras import metrics
#keras to CNN
from keras.layers import Flatten, Conv1D, MaxPooling1D
# defining network
from keras.layers import Flatten, Conv1D, MaxPooling1D
from keras import regularizers
#keras Load Model
from keras.models import load_model
import talos as ta
import wrangle as wr
from talos.metrics.keras_metrics import fmeasure_acc
from talos.model.layers import hidden_layers
from talos import live
from talos.model import lr_normalizer, early_stopper, hidden_layers
import os
#custom metric
def acc_pearson_r(y_true, y_pred):
x = y_true
y = y_pred
mx = K.mean(x, axis=0)
my = K.mean(y, axis=0)
xm, ym = x - mx, y - my
r_num = K.sum(xm * ym)
x_square_sum = K.sum(xm * xm)
y_square_sum = K.sum(ym * ym)
r_den = K.sqrt(x_square_sum * y_square_sum)
r = r_num / r_den
return K.mean(r)
def correlation_coefficient_loss(y_true, y_pred):
x = y_true
y = y_pred
mx = K.mean(x)
my = K.mean(y)
xm, ym = x-mx, y-my
r_num = K.sum(tf.multiply(xm,ym))
r_den = K.sqrt(tf.multiply(K.sum(K.square(xm)), K.sum(K.square(ym))))
r = r_num / r_den
r = K.maximum(K.minimum(r, 1.0), -1.0)
return 1 - K.square(r)
# nStride=3 # stride between convolutions
# nFilter=32 # no. of convolutions
def cnn_main(x, y, x_val, y_val, params):
# next we can build the model exactly like we would normally do it
# Instantiate
model_cnn = Sequential()
nSNP = x.shape[1]
try:
out_c = y.shape[1]
except IndexError:
out_c = 1
x = np.expand_dims(x, axis=2)
x_val = np.expand_dims(x_val, axis=2)
# add convolutional layer
if (params['nconv']==1):
model_cnn.add(Conv1D(params['nFilter'], kernel_size=params['kernel_size'],
strides=params['nStride'], input_shape=(nSNP, 1),
kernel_regularizer=regularizers.l2(params['reg2']), kernel_initializer='normal',
activity_regularizer=regularizers.l1(params['reg1']),activation=params['activation_1']))
model_cnn.add(MaxPooling1D(pool_size=params['pool']))
# Solutions above are linearized to accommodate a standard layer
else:
for _ in range(params['nconv']):
if (_==0):
model_cnn.add(Conv1D(params['nFilter'], kernel_size=params['kernel_size'],
strides=params['nStride'], input_shape=(nSNP, 1),
kernel_regularizer=regularizers.l2(params['reg2']), kernel_initializer='normal',
activity_regularizer=regularizers.l1(params['reg1']),activation=params['activation_1']))
model_cnn.add(MaxPooling1D(pool_size=params['pool']))
# Solutions above are linearized to accommodate a standard layer
else:
model_cnn.add(Conv1D(params['nFilter'], kernel_size=params['kernel_size'],
strides=params['nStride'],
kernel_regularizer=regularizers.l2(params['reg2']), kernel_initializer='normal',
activity_regularizer=regularizers.l1(params['reg1']),activation=params['activation_1']))
model_cnn.add(MaxPooling1D(pool_size=params['pool']))
model_cnn.add(Flatten())
if (params['hidden_layers'] != 0):
# if we want to also test for number of layers and shapes, that's possible
for _ in range(params['hidden_layers']):
model_cnn.add(Dense(params['hidden_neurons'], activation=params['activation_2'],
kernel_regularizer=regularizers.l2(params['reg2'])))
model_cnn.add(Dropout(params['dropout_2']))
model_cnn.add(Dense(out_c, activation=params['last_activation'], kernel_regularizer=regularizers.l2(params['reg3'])
))
if params['optimizer']=='Adam':
params['optimizer']= Adam
if params['optimizer']=='Nadam':
params['optimizer']= Nadam
if params['optimizer']=='sgd':
params['optimizer']= sgd
model_cnn.compile(loss=mean_squared_error,
optimizer=params['optimizer'](lr=lr_normalizer(params['lr'], params['optimizer'])),
metrics=[acc_pearson_r])
# simple early stopping
# if you monitor is an accuracy parameter (pearson here, you should chose mode="max"), otherwise it would be "min"
# 7/08/2019 change mean_squared_error here by acc_pearson_r and mode='min' by mode='max'
#es = EarlyStopping(monitor=acc_pearson_r, mode='max', verbose=1)
# callbacks=[live()] see the output
# callbacks= es to EarlyStopping
out_cnn = model_cnn.fit(x, y, validation_split=0.2,
verbose=0, batch_size=params['batch_size'],
epochs=params['epochs'], callbacks=[live()])
return out_cnn, model_cnn
#CNN main categories
def cnn_main_cat(x, y, x_val, y_val, params):
# next we can build the model exactly like we would normally do it
# Instantiate
model_cnn = Sequential()
nSNP = x.shape[1]
out_c= y.shape[1]
x = np.expand_dims(x, axis=2)
x_val = np.expand_dims(x_val, axis=2)
# add convolutional layer
if (params['nconv']==1):
model_cnn.add(Conv1D(params['nFilter'], kernel_size=params['kernel_size'],
strides=params['nStride'], input_shape=(nSNP, 1),
kernel_regularizer=regularizers.l2(params['reg2']), kernel_initializer='normal',
activity_regularizer=regularizers.l1(params['reg1']),activation=params['activation_1']))
model_cnn.add(MaxPooling1D(pool_size=params['pool']))
# Solutions above are linearized to accommodate a standard layer
else:
for _ in range(params['nconv']):
if (_==0):
model_cnn.add(Conv1D(params['nFilter'], kernel_size=params['kernel_size'],
strides=params['nStride'], input_shape=(nSNP, 1),
kernel_regularizer=regularizers.l2(params['reg2']), kernel_initializer='normal',
activity_regularizer=regularizers.l1(params['reg1']),activation=params['activation_1']))
model_cnn.add(MaxPooling1D(pool_size=params['pool']))
# Solutions above are linearized to accommodate a standard layer
else:
model_cnn.add(Conv1D(params['nFilter'], kernel_size=params['kernel_size'],
strides=params['nStride'],
kernel_regularizer=regularizers.l2(params['reg2']), kernel_initializer='normal',
activity_regularizer=regularizers.l1(params['reg1']),activation=params['activation_1']))
model_cnn.add(MaxPooling1D(pool_size=params['pool']))
model_cnn.add(Flatten())
if (params['hidden_layers'] != 0):
# if we want to also test for number of layers and shapes, that's possible
for _ in range(params['hidden_layers']):
model_cnn.add(Dense(params['hidden_neurons'], activation=params['activation_1'],
activity_regularizer=regularizers.l1(params['reg1'])))
model_cnn.add(Dropout(params['dropout']))
model_cnn.add(Dense(out_c, activation='softmax'))
if params['optimizer']=='Adam':
params['optimizer']= Adam
if params['optimizer']=='Nadam':
params['optimizer']= Nadam
if params['optimizer']=='sgd':
params['optimizer']= sgd
model_cnn.compile(loss='categorical_crossentropy', optimizer=params['optimizer'](lr=lr_normalizer(params['lr'],
params['optimizer'])),metrics=['accuracy'])
# simple early stopping
# if you monitor is an accuracy parameter (pearson here, you should chose mode="max"), otherwise it would be "min"
#es = EarlyStopping(monitor=mean_squared_error, mode='min', verbose=1)
# callbacks=[live()] see the output
# callbacks= es to EarlyStopping
out_cnn = model_cnn.fit(x, y, validation_split=0.2,
verbose=0, batch_size=params['batch_size'],
epochs=params['epochs'])
return out_cnn, model_cnn