[edb3de]: / D-GSMLM / D-GSMLM.m

Download this file

161 lines (111 with data), 4.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
clear all
clc
tic
load dataset.mat; %Partition Dataset for the 5 fold test
% rng('default'); % reset random generator.
opts.tFlag = 1; % terminate after relative objective value does not changes much.
opts.tol = 10^-5; % tolerance.
opts.maxIter = 1000; % maximum iteration number of optimization.
for n=1:5
test_VBM=Xt_VBM{1,n};
test_CC=Xt_CC{1,n};
test_Yt=Yt_SNP{1,n}(:,1);
task.DT{1}=X_VBM{1,n};
task.DT{2}=X_CC{1,n};
respons=Y_SNP{1,n}(:,1);
task.target{1}=Y_SNP{1,n}(:,1); %1:rs429358
task.target{2}=Y_SNP{1,n}(:,1); %2:rs429358
task.lab{1}=Y{1,n};
task.lab{2}=Y{1,n};
gnd=task.lab{1};
task.num=2;
paraset=[0.0000001 0.0000003 0.000001 0.000003 0.00001];
for j=1:length(paraset)
opts.rho1=paraset(j);
for k=1:length(paraset)
opts.rho_L3=paraset(k);
opts.init =2; % guess start point from data ZERO.
kfold=5;
kk=1;
% construct the index of cross_validation for each task.
[tcv fcv]=f_myCV(gnd',kfold,kk);
%% begin to 5-fold.
for cc=1:kfold
task.X = cell(task.num,1);
task.Y = cell(task.num,1);
for i=1:task.num
trLab=tcv{cc}';
% generate the task.
task.X{i}=task.DT{i}(trLab,:);
task.Y{i}=task.target{i}(trLab);
task.label{i}=task.lab{i}(trLab);
end
%----------Main Algorithm---------------
[S, D] = f_lapMatrix(task.Y{1});
[W, epsvalue] = f_MTM_APG(task.X,task.Y,opts,S, D);
% find the selected features for each task.
trLab=tcv{cc}';
teLab=fcv{cc}';
pl=task.DT{1}(teLab,:)*W(:,1);
pl2=task.DT{2}(teLab,:)*W(:,2);
et(cc)=sqrt(mean((pl-respons(teLab,1)).^2))+sqrt(mean((pl2-respons(teLab,1)).^2));
a=respons(teLab,1)-mean(respons(teLab,1));b=pl-mean(pl);
a2=respons(teLab,1)-mean(respons(teLab,1));b2=pl2-mean(pl2);
co(cc)=abs(sum(a.*b)/sqrt(sum(a.^2)*sum(b.^2)))+abs(sum(a2.*b2)/sqrt(sum(a2.^2)*sum(b2.^2)));%+abs(sum(a3.*b3)/sqrt(sum(a3.^2)*sum(b3.^2)))+abs(sum(a4.*b4)/sqrt(sum(a4.^2)*sum(b4.^2)));
end
res_kfold_CO(kk)=mean(co);
res_kfold_RMSE(kk)=mean(et);
res_CO(j,k)=mean(res_kfold_CO);
res_RMSE(j,k)=mean(res_kfold_RMSE);
end
end
ndim=size(res_RMSE);
tempRMSE=10;
tempCO=0;
for ii=1:ndim(1)
for jj=1:ndim(2)
if res_CO(ii,jj)>tempCO
tempCO=res_CO(ii,jj);
paraSet=[ii,jj];
end
end
end
paraSet
test_opts.rho1=paraset(paraSet(1));
test_opts.rho_L3=paraset(paraSet(2));
Final_para{n}=paraSet;
test_opts.tFlag = 1; % terminate after relative objective value does not changes much.
test_opts.tol = 10^-5; % tolerance.
test_opts.maxIter = 1000; % maximum iteration number of optimization.
test_opts.init = 2; % guess start point from data ZERO.
[newtask.S, newtask.D] = f_lapMatrix(task.DT{1});
[newW, epsvalue] = f_MTM_APG(task.DT,task.target,opts,newtask.S, newtask.D);
trainpl=task.DT{1}*newW(:,1);
trainpl2=task.DT{2}*newW(:,2);
trainRMSE(n)=sqrt(mean((trainpl-task.target{1}).^2));
trainRMSE2(n)=sqrt(mean((trainpl2-task.target{2}).^2));
aa=task.target{1}-mean(task.target{1});bb=trainpl-mean(trainpl);
aa2=task.target{2}-mean(task.target{2});bb2=trainpl2-mean(trainpl2);
trainCO(n)=sum(aa.*bb)/sqrt(sum(aa.^2)*sum(bb.^2));
trainCO2(n)=sum(aa2.*bb2)/sqrt(sum(aa2.^2)*sum(bb2.^2));
testpl=test_VBM*newW(:,1);
testpl2=test_CC*newW(:,2);
testRMSE(n)=sqrt(mean((testpl-test_Yt).^2));
testRMSE2(n)=sqrt(mean((testpl2-test_Yt).^2));
Weight{n}=newW;
aa=test_Yt-mean(test_Yt);bb=testpl-mean(testpl);
aa2=test_Yt-mean(test_Yt);bb2=testpl2-mean(testpl2);
testCO(n)=sum(aa.*bb)/sqrt(sum(aa.^2)*sum(bb.^2));
testCO2(n)=sum(aa2.*bb2)/sqrt(sum(aa2.^2)*sum(bb2.^2));
p{n}=testpl;
p2{n}=testpl2;
end
toc
RMSE_VBM1=[mean( trainRMSE) std( trainRMSE)]
RMSE_CC2=[mean( trainRMSE2) std( trainRMSE2)]
CC_VBM1=[mean( trainCO) std( trainCO)]
CC_CC2=[mean( trainCO2) std( trainCO2)]
RMSE_VBM11=[mean(testRMSE) std(testRMSE)]
RMSE_CC22=[mean(testRMSE2) std(testRMSE2)]
CC_VBM11=[mean(testCO) std(testCO)]
CC_CC22=[mean(testCO2) std(testCO2)]