|
a |
|
b/step1.py |
|
|
1 |
""" |
|
|
2 |
Generating useful files |
|
|
3 |
-- all_ALS_var.txt |
|
|
4 |
-- promoter1.csv |
|
|
5 |
-- var_in_file.json |
|
|
6 |
""" |
|
|
7 |
|
|
|
8 |
import os |
|
|
9 |
import sys |
|
|
10 |
import vcf |
|
|
11 |
import pandas as pd |
|
|
12 |
import numpy as np |
|
|
13 |
import bisect |
|
|
14 |
import json |
|
|
15 |
import csv |
|
|
16 |
|
|
|
17 |
def Used_variant_pos(promoters): |
|
|
18 |
used_variant = [] |
|
|
19 |
for pro in promoters: |
|
|
20 |
for p in pro: |
|
|
21 |
if p not in used_variant: used_variant.append(p) |
|
|
22 |
return used_variant |
|
|
23 |
|
|
|
24 |
fold_path = ''#'./chr22new/' |
|
|
25 |
files = ['xaa.vcf'] |
|
|
26 |
# read all ALS variants position |
|
|
27 |
all_pos = [] |
|
|
28 |
for f_str in files: |
|
|
29 |
file_name = fold_path+f_str |
|
|
30 |
with open(file_name, 'r') as f: |
|
|
31 |
lines = [l.replace('\n','').split("\t") for l in f if not l.startswith('##')] |
|
|
32 |
info = lines[2:] |
|
|
33 |
l = [i[1] for i in info] |
|
|
34 |
all_pos += l |
|
|
35 |
print "Total number of variant pos: ", len(all_pos) |
|
|
36 |
all_pos = map(int, all_pos) |
|
|
37 |
all_pos_min = min(all_pos)/10000*10000 |
|
|
38 |
all_pos_max = max(all_pos)/10000*10000 |
|
|
39 |
|
|
|
40 |
# all_pos is the list of poistion of variants from ALS dataset |
|
|
41 |
ALS_var_pos = map(int, all_pos) # variant position in ALS |
|
|
42 |
|
|
|
43 |
# read refS dataset of this chromsome |
|
|
44 |
csv_folder = './csv_files/' |
|
|
45 |
refs = pd.read_csv(csv_folder+'chr22.csv', sep="\t") |
|
|
46 |
refs = refs.drop_duplicates(subset=['txStart', 'txEnd']).sort_values('txStart') |
|
|
47 |
|
|
|
48 |
# scale the refS dataset |
|
|
49 |
refs_ = refs[refs.txStart>all_pos_min] |
|
|
50 |
refs_ = refs_[refs_.txStart < all_pos_max] |
|
|
51 |
|
|
|
52 |
temp = refs_.txStart.tolist() |
|
|
53 |
ref_start = map(int, temp) # start posotion |
|
|
54 |
temp = refs_.txEnd.tolist() |
|
|
55 |
ref_end = map(int, temp) # end position |
|
|
56 |
temp = refs_.strand.tolist() |
|
|
57 |
strand_f = lambda x: 1 if x == "+" else 0 |
|
|
58 |
ref_strand = map(strand_f, temp) # strand |
|
|
59 |
|
|
|
60 |
# generate promoter ddictionary |
|
|
61 |
# {start_RefS_pos: ALS_promoter_vars} |
|
|
62 |
promoter_dict = {} |
|
|
63 |
sim_promoter_dict = {} |
|
|
64 |
unique_promoter = [] |
|
|
65 |
for i in range(len(ref_start)): |
|
|
66 |
promoter_pos = [] |
|
|
67 |
strand_ = ref_strand[i] |
|
|
68 |
|
|
|
69 |
if strand_: |
|
|
70 |
start_p = ref_start[i] |
|
|
71 |
p = bisect.bisect_left(ALS_var_pos, start_p + .5) |
|
|
72 |
promoter_pos = ALS_var_pos[p - 55:p] + ALS_var_pos[p:p + 9] |
|
|
73 |
else: |
|
|
74 |
start_p = ref_end[i] |
|
|
75 |
p = bisect.bisect_left(ALS_var_pos, start_p - .5) |
|
|
76 |
promoter_pos = ALS_var_pos[p - 8:p] + ALS_var_pos[p:p + 56] |
|
|
77 |
|
|
|
78 |
promoter_dict[start_p] = promoter_pos |
|
|
79 |
if promoter_pos not in unique_promoter: |
|
|
80 |
unique_promoter.append(promoter_pos) |
|
|
81 |
|
|
|
82 |
print " There are ", len(promoter_dict.values()), " genes" |
|
|
83 |
print " There are unique", len(unique_promoter), " genes" |
|
|
84 |
print " ",len(promoter_dict.values()) - len(unique_promoter), "genes are repeated" |
|
|
85 |
|
|
|
86 |
# used ALS variants position |
|
|
87 |
promoters = promoter_dict.values() |
|
|
88 |
used_var = Used_variant_pos(promoters) |
|
|
89 |
|
|
|
90 |
# generate lisit of used ALS position |
|
|
91 |
# because there are some repeat pos |
|
|
92 |
# this process will generate all necessary information for sequencing |
|
|
93 |
q = [] |
|
|
94 |
for i in all_pos: |
|
|
95 |
if i in used_var: |
|
|
96 |
q.append(i) |
|
|
97 |
|
|
|
98 |
thefile = open('all_ALS_var.txt', 'w') |
|
|
99 |
for item in q: |
|
|
100 |
thefile.write("%s\n" % item) |
|
|
101 |
|
|
|
102 |
|
|
|
103 |
# generate used variants in each .vcf file |
|
|
104 |
all_pos_dic = {} |
|
|
105 |
for f_str in files: |
|
|
106 |
l = [] |
|
|
107 |
file_name = fold_path+f_str |
|
|
108 |
with open(file_name, 'r') as f: |
|
|
109 |
lines = [s.replace('\n','').split("\t") for s in f if not s.startswith('##')] |
|
|
110 |
info = lines[2:] |
|
|
111 |
l = [i[1] for i in info] |
|
|
112 |
all_pos_dic[f_str] = l |
|
|
113 |
print "Total number of variant file: ", len(all_pos_dic) |
|
|
114 |
|
|
|
115 |
for k,v in all_pos_dic.items(): |
|
|
116 |
q = [] |
|
|
117 |
for i in v: |
|
|
118 |
if int(i) in used_var: |
|
|
119 |
q.append(i) |
|
|
120 |
all_pos_dic[k] = q |
|
|
121 |
|
|
|
122 |
|
|
|
123 |
with open('var_in_file.json', 'w') as fp: |
|
|
124 |
json.dump(all_pos_dic, fp) |
|
|
125 |
|
|
|
126 |
# save promoter information |
|
|
127 |
promotersx = [] |
|
|
128 |
for ps in promoters: |
|
|
129 |
if ps not in promotersx: |
|
|
130 |
promotersx.append(ps) |
|
|
131 |
promotersx = sorted(promotersx) |
|
|
132 |
|
|
|
133 |
|
|
|
134 |
with open("promoter1.csv", "wb") as f: |
|
|
135 |
writer = csv.writer(f) |
|
|
136 |
writer.writerows(promotersx) |
|
|
137 |
|
|
|
138 |
print "Files generated: \n \t --var_in_file.json \n \t -- promoter1.csv \n \t -- all_ALS_var.txt" |