[1fc74a]: / HTNet / multi-modality / train.py

Download this file

285 lines (234 with data), 11.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import datetime
import os
import time
import torch
import torch.utils.data
from torch import nn
from torchvision import transforms
from resnet import resnet152
import utils
def train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, print_freq):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}'))
metric_logger.add_meter('img/s', utils.SmoothedValue(window_size=10, fmt='{value}'))
header = 'Epoch: [{}]'.format(epoch)
for image, antibody, target in metric_logger.log_every(data_loader, print_freq, header):
start_time = time.time()
image, antibody, target = image.to(device), antibody.to(device), target.to(device)
output = model(image, antibody)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
acc1, acc5 = utils.accuracy(output, target, topk=(1, 2))
batch_size = image.shape[0]
metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc2'].update(acc5.item(), n=batch_size)
metric_logger.meters['img/s'].update(batch_size / (time.time() - start_time))
def evaluate(model, criterion, data_loader, device, print_freq=100):
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
with torch.no_grad():
for image, antibody, target in metric_logger.log_every(data_loader, print_freq, header):
image = image.to(device, non_blocking=True)
antibody = antibody.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
output = model(image, antibody)
loss = criterion(output, target)
acc1, acc5 = utils.accuracy(output, target, topk=(1, 2))
# FIXME need to take into account that the datasets
# could have been padded in distributed setup
batch_size = image.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc2'].update(acc5.item(), n=batch_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print(' * Acc@1 {top1.global_avg:.3f} Acc@2 {top5.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc2))
return metric_logger.acc1.global_avg
def _get_cache_path(filepath):
import hashlib
h = hashlib.sha1(filepath.encode()).hexdigest()
cache_path = os.path.join("~", ".torch", "vision", "datasets", "imagefolder", h[:10] + ".pt")
cache_path = os.path.expanduser(cache_path)
return cache_path
def load_data(traindir, valdir, antibody_train, antibody_val, cache_dataset, distributed):
# Data loading code
print("Loading data")
normalize = transforms.Normalize(mean=[0.168, 0.174, 0.182],
std =[0.159, 0.160, 0.162])
expression_tfs = transforms.Compose([nn.Dropout(0.3)])
print("Loading data")
st = time.time()
dataset = utils.HTDataset(
traindir, antibody_train,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(degrees=180),
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.0),
transforms.ToTensor(),
normalize,
]), expression_tfs)
dataset_test = utils.HTDataset(
valdir, antibody_val,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]), None)
print("Took", time.time() - st)
print("Creating data loaders")
if distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test)
else:
train_sampler = torch.utils.data.RandomSampler(dataset)
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
return dataset, dataset_test, train_sampler, test_sampler
def main(args):
if args.output_dir:
utils.mkdir(args.output_dir)
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
torch.backends.cudnn.benchmark = True
train_dir = args.train_file
val_dir = args.val_file
dataset, dataset_test, train_sampler, test_sampler = load_data(train_dir, val_dir,
args.antibodytrn, args.antibodyval,
args.cache_dataset, args.distributed)
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=args.batch_size,
sampler=train_sampler, num_workers=args.workers, pin_memory=True)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=args.batch_size,
sampler=test_sampler, num_workers=args.workers, pin_memory=True)
print("Creating model")
model = resnet152(num_classes=2, antibody_nums=6) # 6 antibodies
image_checkpoint = "../hashimoto_thyroiditis/model_79.pth"
flag = os.path.exists(image_checkpoint)
if flag:
checkpoint = torch.load(image_checkpoint, map_location='cpu')
msg = model.load_state_dict(checkpoint['model'], strict=False)
print(msg)
print("Parameters to be updated:")
parameters_to_be_updated = ['fc.weight', 'fc.bias'] + msg.missing_keys
print(parameters_to_be_updated)
for name, param in model.named_parameters():
if name not in parameters_to_be_updated:
param.requires_grad = False
model.to(device)
if args.distributed and args.sync_bn:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
if flag:
parameters = list(filter(lambda p: p.requires_grad, model.parameters()))
assert len(parameters) == len(parameters_to_be_updated)
else:
parameters = model.parameters()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(
parameters, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.test_only:
evaluate(model, criterion, data_loader_test, device=device)
return
print("Start training")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args.print_freq)
lr_scheduler.step()
evaluate(model, criterion, data_loader_test, device=device)
if args.output_dir:
checkpoint = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args}
utils.save_on_master(
checkpoint,
os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))
utils.save_on_master(
checkpoint,
os.path.join(args.output_dir, 'checkpoint.pth'))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
def parse_args():
import argparse
parser = argparse.ArgumentParser(description='PyTorch Classification Training')
parser.add_argument('--train-file', help='training set of image file')
parser.add_argument('--val-file', help='validation set of image file')
parser.add_argument('--antibodytrn', help='training set of antibody')
parser.add_argument('--antibodyval', help='validation set of antibody')
parser.add_argument('--num-classes', help='number of classes for the objective task', type=int)
parser.add_argument('--device', default='cuda', help='device')
parser.add_argument('-b', '--batch-size', default=32, type=int)
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
help='number of data loading workers (default: 16)')
parser.add_argument('--lr', default=0.1, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--lr-step-size', default=30, type=int, help='decrease lr every step-size epochs')
parser.add_argument('--lr-gamma', default=0.1, type=float, help='decrease lr by a factor of lr-gamma')
parser.add_argument('--print-freq', default=10, type=int, help='print frequency')
parser.add_argument('--output-dir', default='.', help='path where to save')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument(
"--cache-dataset",
dest="cache_dataset",
help="Cache the datasets for quicker initialization. It also serializes the transforms",
action="store_true",
)
parser.add_argument(
"--sync-bn",
dest="sync_bn",
help="Use sync batch norm",
action="store_true",
)
parser.add_argument(
"--test-only",
dest="test_only",
help="Only test the model",
action="store_true",
)
parser.add_argument(
"--pretrained",
dest="pretrained",
help="Use pre-trained models from the modelzoo",
action="store_true",
)
# distributed training parameters
parser.add_argument('--world-size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
main(args)