Switch to side-by-side view

--- a
+++ b/HTNet/multi-modality/utils.py
@@ -0,0 +1,393 @@
+from collections import defaultdict, deque
+import datetime
+import time
+import torch
+import torch.utils.data.dataset
+import torch.distributed as dist
+
+from sklearn.preprocessing import MultiLabelBinarizer, LabelEncoder
+from PIL import Image, ImageFile
+ImageFile.LOAD_TRUNCATED_IMAGES = True
+import pandas as pd
+import numpy as np
+
+import errno
+import os
+
+class LNMLocationDataset(torch.utils.data.dataset.Dataset):
+    """Loading data from input file formatted as csv.
+    """
+    def __init__(self, infile=None, transform=None, df=None):
+        self.transform = transform
+        self.lbe = LabelEncoder()
+        
+        # Read csv file
+        if df is None:
+            df = pd.read_csv(infile)
+            
+        self.images = df['image_name']
+        self.labels = self.lbe.fit_transform(df['tags'])
+    
+        self.classes = sorted(np.unique(df['tags']))
+        self.class_to_idx = dict(zip(self.classes, range(0, len(self.classes))))
+        
+        self.imgs = list(zip(self.images, self.labels))
+        self.root = '/media/storage1/project/deep_learning/ultrasound_tjmuch/ultrasound_tjmuch_data_20180105'
+
+    def __getitem__(self, i):
+        path = os.path.join(self.root, self.images[i])
+        
+        with open(path, 'rb') as f:
+            img = Image.open(f)
+            img = img.convert('RGB')
+            
+        if self.transform is not None:
+            img = self.transform(img)
+
+        label = torch.tensor(self.labels[i], dtype = torch.long)
+        
+        return img, label
+
+    def __len__(self):
+        return len(self.images)
+
+
+class CSVDataset(torch.utils.data.dataset.Dataset):
+    """Loading data from input file formatted as csv.
+    """
+    def __init__(self, infile=None, transform=None, df=None):
+        self.transform = transform
+        self.lbe = LabelEncoder()
+        
+        # Read csv file
+        if df is None:
+            df = pd.read_csv(infile)
+            
+        self.images = df['image_name']
+        #self.labels = self.lbe.fit_transform(df['label'])
+        self.labels = df['label']
+    
+        self.classes = sorted(np.unique(df['label']))
+        self.class_to_idx = dict(zip(self.classes, range(0, len(self.classes))))
+        
+        self.imgs = list(zip(self.images, self.labels))
+
+    def __getitem__(self, i):
+        path = self.images[i]
+        
+        with open(path, 'rb') as f:
+            img = Image.open(f)
+            img = img.convert('RGB')
+            
+        if self.transform is not None:
+            img = self.transform(img)
+
+        label = torch.tensor(self.labels[i], dtype = torch.long)
+        
+        return img, label
+
+    def __len__(self):
+        return len(self.images)
+
+class HTDataset(torch.utils.data.dataset.Dataset):
+    """Loading data from input file formatted as csv.
+    """
+    def __init__(self, image_file, antibody_file, image_tfs=None, expression_tfs=None):
+        self.image_tfs = image_tfs
+        self.expression_tfs = expression_tfs
+        
+        df = pd.read_csv(image_file)
+        self.images = df['image_name'].to_list()
+        self.labels = df['label'].to_list()
+        
+        df = pd.read_csv(antibody_file)
+        self.x = np.asarray(df.loc[:,["Tg","Anti-TG","Anti-TPO","T3","T4","TSH"]])
+        self.x = torch.as_tensor(self.x, dtype=torch.float32)
+        self.y = np.asarray(df['hashimoto_thyroiditis'])
+   
+        assert len(np.unique(self.labels)) == 2
+        assert len(np.unique(self.y)) == 2
+        
+        self.x_pos = self.x[self.y == 1]
+        self.x_neg = self.x[self.y == 0]
+        
+        self.x_pos_k = len(self.x_pos)
+        self.x_neg_k = len(self.x_neg)
+
+    def __getitem__(self, i):
+        path = self.images[i]
+        
+        with open(path, 'rb') as f:
+            img = Image.open(f)
+            img = img.convert('RGB')
+            
+        if self.image_tfs is not None:
+            img = self.image_tfs(img)
+
+        if self.labels[i] == 1:
+            #x = self.x_pos[np.random.choice(self.x_pos_k)]
+            x = self.get_permuted_sample(self.x_pos)
+        else:
+            #x = self.x_neg[np.random.choice(self.x_neg_k)]
+            x = self.get_permuted_sample(self.x_neg)
+            
+        label = torch.tensor(self.labels[i], dtype = torch.long)
+        if self.expression_tfs is not None:
+            x = self.expression_tfs(x)
+        
+        return img, x, label
+
+    def __len__(self):
+        return len(self.images)
+
+    def get_permuted_sample(self, x):
+        if np.random.random_sample() < 0.05:
+            return torch.as_tensor(x[np.random.choice(len(x))], dtype=torch.float32)
+        else:
+            return torch.as_tensor(np.apply_along_axis(np.random.choice, 0, x), dtype=torch.float32)
+
+
+class SmoothedValue(object):
+    """Track a series of values and provide access to smoothed values over a
+    window or the global series average.
+    """
+
+    def __init__(self, window_size=20, fmt=None):
+        if fmt is None:
+            fmt = "{median:.4f} ({global_avg:.4f})"
+        self.deque = deque(maxlen=window_size)
+        self.total = 0.0
+        self.count = 0
+        self.fmt = fmt
+
+    def update(self, value, n=1):
+        self.deque.append(value)
+        self.count += n
+        self.total += value * n
+
+    def synchronize_between_processes(self):
+        """
+        Warning: does not synchronize the deque!
+        """
+        if not is_dist_avail_and_initialized():
+            return
+        t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
+        dist.barrier()
+        dist.all_reduce(t)
+        t = t.tolist()
+        self.count = int(t[0])
+        self.total = t[1]
+
+    @property
+    def median(self):
+        d = torch.tensor(list(self.deque))
+        return d.median().item()
+
+    @property
+    def avg(self):
+        d = torch.tensor(list(self.deque), dtype=torch.float32)
+        return d.mean().item()
+
+    @property
+    def global_avg(self):
+        return self.total / self.count
+
+    @property
+    def max(self):
+        return max(self.deque)
+
+    @property
+    def value(self):
+        return self.deque[-1]
+
+    def __str__(self):
+        return self.fmt.format(
+            median=self.median,
+            avg=self.avg,
+            global_avg=self.global_avg,
+            max=self.max,
+            value=self.value)
+
+
+class MetricLogger(object):
+    def __init__(self, delimiter="\t"):
+        self.meters = defaultdict(SmoothedValue)
+        self.delimiter = delimiter
+
+    def update(self, **kwargs):
+        for k, v in kwargs.items():
+            if isinstance(v, torch.Tensor):
+                v = v.item()
+            assert isinstance(v, (float, int))
+            self.meters[k].update(v)
+
+    def __getattr__(self, attr):
+        if attr in self.meters:
+            return self.meters[attr]
+        if attr in self.__dict__:
+            return self.__dict__[attr]
+        raise AttributeError("'{}' object has no attribute '{}'".format(
+            type(self).__name__, attr))
+
+    def __str__(self):
+        loss_str = []
+        for name, meter in self.meters.items():
+            loss_str.append(
+                "{}: {}".format(name, str(meter))
+            )
+        return self.delimiter.join(loss_str)
+
+    def synchronize_between_processes(self):
+        for meter in self.meters.values():
+            meter.synchronize_between_processes()
+
+    def add_meter(self, name, meter):
+        self.meters[name] = meter
+
+    def log_every(self, iterable, print_freq, header=None):
+        i = 0
+        if not header:
+            header = ''
+        start_time = time.time()
+        end = time.time()
+        iter_time = SmoothedValue(fmt='{avg:.4f}')
+        data_time = SmoothedValue(fmt='{avg:.4f}')
+        space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
+        if torch.cuda.is_available():
+            log_msg = self.delimiter.join([
+                header,
+                '[{0' + space_fmt + '}/{1}]',
+                'eta: {eta}',
+                '{meters}',
+                'time: {time}',
+                'data: {data}',
+                'max mem: {memory:.0f}'
+            ])
+        else:
+            log_msg = self.delimiter.join([
+                header,
+                '[{0' + space_fmt + '}/{1}]',
+                'eta: {eta}',
+                '{meters}',
+                'time: {time}',
+                'data: {data}'
+            ])
+        MB = 1024.0 * 1024.0
+        for obj in iterable:
+            data_time.update(time.time() - end)
+            yield obj
+            iter_time.update(time.time() - end)
+            if i % print_freq == 0:
+                eta_seconds = iter_time.global_avg * (len(iterable) - i)
+                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
+                if torch.cuda.is_available():
+                    print(log_msg.format(
+                        i, len(iterable), eta=eta_string,
+                        meters=str(self),
+                        time=str(iter_time), data=str(data_time),
+                        memory=torch.cuda.max_memory_allocated() / MB))
+                else:
+                    print(log_msg.format(
+                        i, len(iterable), eta=eta_string,
+                        meters=str(self),
+                        time=str(iter_time), data=str(data_time)))
+            i += 1
+            end = time.time()
+        total_time = time.time() - start_time
+        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
+        print('{} Total time: {}'.format(header, total_time_str))
+
+
+def accuracy(output, target, topk=(1,)):
+    """Computes the accuracy over the k top predictions for the specified values of k"""
+    with torch.no_grad():
+        maxk = max(topk)
+        batch_size = target.size(0)
+
+        _, pred = output.topk(maxk, 1, True, True)
+        pred = pred.t()
+        correct = pred.eq(target[None])
+
+        res = []
+        for k in topk:
+            correct_k = correct[:k].flatten().sum(dtype=torch.float32)
+            res.append(correct_k * (100.0 / batch_size))
+        return res
+
+
+def mkdir(path):
+    try:
+        os.makedirs(path)
+    except OSError as e:
+        if e.errno != errno.EEXIST:
+            raise
+
+
+def setup_for_distributed(is_master):
+    """
+    This function disables printing when not in master process
+    """
+    import builtins as __builtin__
+    builtin_print = __builtin__.print
+
+    def print(*args, **kwargs):
+        force = kwargs.pop('force', False)
+        if is_master or force:
+            builtin_print(*args, **kwargs)
+
+    __builtin__.print = print
+
+
+def is_dist_avail_and_initialized():
+    if not dist.is_available():
+        return False
+    if not dist.is_initialized():
+        return False
+    return True
+
+
+def get_world_size():
+    if not is_dist_avail_and_initialized():
+        return 1
+    return dist.get_world_size()
+
+
+def get_rank():
+    if not is_dist_avail_and_initialized():
+        return 0
+    return dist.get_rank()
+
+
+def is_main_process():
+    return get_rank() == 0
+
+
+def save_on_master(*args, **kwargs):
+    if is_main_process():
+        torch.save(*args, **kwargs)
+
+
+def init_distributed_mode(args):
+    if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
+        args.rank = int(os.environ["RANK"])
+        args.world_size = int(os.environ['WORLD_SIZE'])
+        args.gpu = int(os.environ['LOCAL_RANK'])
+    elif 'SLURM_PROCID' in os.environ:
+        args.rank = int(os.environ['SLURM_PROCID'])
+        args.gpu = args.rank % torch.cuda.device_count()
+    elif hasattr(args, "rank"):
+        pass
+    else:
+        print('Not using distributed mode')
+        args.distributed = False
+        return
+
+    args.distributed = True
+
+    torch.cuda.set_device(args.gpu)
+    args.dist_backend = 'nccl'
+    print('| distributed init (rank {}): {}'.format(
+        args.rank, args.dist_url), flush=True)
+    torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
+                                         world_size=args.world_size, rank=args.rank)
+    setup_for_distributed(args.rank == 0)