--- a +++ b/HTNet/multi-modality/train.py @@ -0,0 +1,284 @@ +import datetime +import os +import time + +import torch +import torch.utils.data +from torch import nn +from torchvision import transforms +from resnet import resnet152 +import utils + +def train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, print_freq): + model.train() + metric_logger = utils.MetricLogger(delimiter=" ") + metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}')) + metric_logger.add_meter('img/s', utils.SmoothedValue(window_size=10, fmt='{value}')) + + header = 'Epoch: [{}]'.format(epoch) + for image, antibody, target in metric_logger.log_every(data_loader, print_freq, header): + start_time = time.time() + image, antibody, target = image.to(device), antibody.to(device), target.to(device) + output = model(image, antibody) + loss = criterion(output, target) + + optimizer.zero_grad() + loss.backward() + optimizer.step() + + acc1, acc5 = utils.accuracy(output, target, topk=(1, 2)) + batch_size = image.shape[0] + metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"]) + metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) + metric_logger.meters['acc2'].update(acc5.item(), n=batch_size) + metric_logger.meters['img/s'].update(batch_size / (time.time() - start_time)) + + +def evaluate(model, criterion, data_loader, device, print_freq=100): + model.eval() + metric_logger = utils.MetricLogger(delimiter=" ") + header = 'Test:' + with torch.no_grad(): + for image, antibody, target in metric_logger.log_every(data_loader, print_freq, header): + image = image.to(device, non_blocking=True) + antibody = antibody.to(device, non_blocking=True) + target = target.to(device, non_blocking=True) + output = model(image, antibody) + loss = criterion(output, target) + + acc1, acc5 = utils.accuracy(output, target, topk=(1, 2)) + # FIXME need to take into account that the datasets + # could have been padded in distributed setup + batch_size = image.shape[0] + metric_logger.update(loss=loss.item()) + metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) + metric_logger.meters['acc2'].update(acc5.item(), n=batch_size) + # gather the stats from all processes + metric_logger.synchronize_between_processes() + + print(' * Acc@1 {top1.global_avg:.3f} Acc@2 {top5.global_avg:.3f}' + .format(top1=metric_logger.acc1, top5=metric_logger.acc2)) + return metric_logger.acc1.global_avg + + +def _get_cache_path(filepath): + import hashlib + h = hashlib.sha1(filepath.encode()).hexdigest() + cache_path = os.path.join("~", ".torch", "vision", "datasets", "imagefolder", h[:10] + ".pt") + cache_path = os.path.expanduser(cache_path) + return cache_path + + +def load_data(traindir, valdir, antibody_train, antibody_val, cache_dataset, distributed): + # Data loading code + print("Loading data") + normalize = transforms.Normalize(mean=[0.168, 0.174, 0.182], + std =[0.159, 0.160, 0.162]) + + expression_tfs = transforms.Compose([nn.Dropout(0.3)]) + + print("Loading data") + st = time.time() + + dataset = utils.HTDataset( + traindir, antibody_train, + transforms.Compose([ + transforms.RandomResizedCrop(224), + transforms.RandomHorizontalFlip(), + transforms.RandomRotation(degrees=180), + transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.0), + transforms.ToTensor(), + normalize, + ]), expression_tfs) + + dataset_test = utils.HTDataset( + valdir, antibody_val, + transforms.Compose([ + transforms.Resize(256), + transforms.CenterCrop(224), + transforms.ToTensor(), + normalize, + ]), None) + + print("Took", time.time() - st) + + print("Creating data loaders") + if distributed: + train_sampler = torch.utils.data.distributed.DistributedSampler(dataset) + test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test) + else: + train_sampler = torch.utils.data.RandomSampler(dataset) + test_sampler = torch.utils.data.SequentialSampler(dataset_test) + + return dataset, dataset_test, train_sampler, test_sampler + + +def main(args): + + if args.output_dir: + utils.mkdir(args.output_dir) + + utils.init_distributed_mode(args) + print(args) + + device = torch.device(args.device) + torch.backends.cudnn.benchmark = True + + train_dir = args.train_file + val_dir = args.val_file + dataset, dataset_test, train_sampler, test_sampler = load_data(train_dir, val_dir, + args.antibodytrn, args.antibodyval, + args.cache_dataset, args.distributed) + data_loader = torch.utils.data.DataLoader( + dataset, batch_size=args.batch_size, + sampler=train_sampler, num_workers=args.workers, pin_memory=True) + + data_loader_test = torch.utils.data.DataLoader( + dataset_test, batch_size=args.batch_size, + sampler=test_sampler, num_workers=args.workers, pin_memory=True) + + print("Creating model") + model = resnet152(num_classes=2, antibody_nums=6) # 6 antibodies + image_checkpoint = "../hashimoto_thyroiditis/model_79.pth" + flag = os.path.exists(image_checkpoint) + + if flag: + checkpoint = torch.load(image_checkpoint, map_location='cpu') + msg = model.load_state_dict(checkpoint['model'], strict=False) + print(msg) + + print("Parameters to be updated:") + parameters_to_be_updated = ['fc.weight', 'fc.bias'] + msg.missing_keys + print(parameters_to_be_updated) + + for name, param in model.named_parameters(): + if name not in parameters_to_be_updated: + param.requires_grad = False + + model.to(device) + if args.distributed and args.sync_bn: + model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) + + if flag: + parameters = list(filter(lambda p: p.requires_grad, model.parameters())) + assert len(parameters) == len(parameters_to_be_updated) + else: + parameters = model.parameters() + + criterion = nn.CrossEntropyLoss() + + optimizer = torch.optim.SGD( + parameters, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) + + lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma) + + model_without_ddp = model + if args.distributed: + model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) + model_without_ddp = model.module + + if args.resume: + checkpoint = torch.load(args.resume, map_location='cpu') + model_without_ddp.load_state_dict(checkpoint['model']) + optimizer.load_state_dict(checkpoint['optimizer']) + lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) + args.start_epoch = checkpoint['epoch'] + 1 + + if args.test_only: + evaluate(model, criterion, data_loader_test, device=device) + return + + print("Start training") + start_time = time.time() + for epoch in range(args.start_epoch, args.epochs): + if args.distributed: + train_sampler.set_epoch(epoch) + train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args.print_freq) + lr_scheduler.step() + evaluate(model, criterion, data_loader_test, device=device) + if args.output_dir: + checkpoint = { + 'model': model_without_ddp.state_dict(), + 'optimizer': optimizer.state_dict(), + 'lr_scheduler': lr_scheduler.state_dict(), + 'epoch': epoch, + 'args': args} + utils.save_on_master( + checkpoint, + os.path.join(args.output_dir, 'model_{}.pth'.format(epoch))) + utils.save_on_master( + checkpoint, + os.path.join(args.output_dir, 'checkpoint.pth')) + + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print('Training time {}'.format(total_time_str)) + + +def parse_args(): + import argparse + parser = argparse.ArgumentParser(description='PyTorch Classification Training') + + parser.add_argument('--train-file', help='training set of image file') + parser.add_argument('--val-file', help='validation set of image file') + parser.add_argument('--antibodytrn', help='training set of antibody') + parser.add_argument('--antibodyval', help='validation set of antibody') + parser.add_argument('--num-classes', help='number of classes for the objective task', type=int) + + parser.add_argument('--device', default='cuda', help='device') + parser.add_argument('-b', '--batch-size', default=32, type=int) + parser.add_argument('--epochs', default=90, type=int, metavar='N', + help='number of total epochs to run') + parser.add_argument('-j', '--workers', default=16, type=int, metavar='N', + help='number of data loading workers (default: 16)') + parser.add_argument('--lr', default=0.1, type=float, help='initial learning rate') + parser.add_argument('--momentum', default=0.9, type=float, metavar='M', + help='momentum') + parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float, + metavar='W', help='weight decay (default: 1e-4)', + dest='weight_decay') + parser.add_argument('--lr-step-size', default=30, type=int, help='decrease lr every step-size epochs') + parser.add_argument('--lr-gamma', default=0.1, type=float, help='decrease lr by a factor of lr-gamma') + parser.add_argument('--print-freq', default=10, type=int, help='print frequency') + parser.add_argument('--output-dir', default='.', help='path where to save') + parser.add_argument('--resume', default='', help='resume from checkpoint') + parser.add_argument('--start-epoch', default=0, type=int, metavar='N', + help='start epoch') + parser.add_argument( + "--cache-dataset", + dest="cache_dataset", + help="Cache the datasets for quicker initialization. It also serializes the transforms", + action="store_true", + ) + parser.add_argument( + "--sync-bn", + dest="sync_bn", + help="Use sync batch norm", + action="store_true", + ) + parser.add_argument( + "--test-only", + dest="test_only", + help="Only test the model", + action="store_true", + ) + parser.add_argument( + "--pretrained", + dest="pretrained", + help="Use pre-trained models from the modelzoo", + action="store_true", + ) + + # distributed training parameters + parser.add_argument('--world-size', default=1, type=int, + help='number of distributed processes') + parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training') + + args = parser.parse_args() + + return args + + +if __name__ == "__main__": + args = parse_args() + main(args)